首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Trisomy 13 in humans is the third most common autosomal abnormality at birth, after trisomy 21 and trisomy 18. It has a reported incidence of between 1:5,000 and 1:30,000 live births. It is associated with multiple abnormalities, many of which shorten lifespan. We describe here the first reported case of a baboon (Papio hamadryas) with trisomy of chromosome 17, which is homologous to human chromosome 13. The trisomic infant was born to a consanguineous pair of baboons and had morphological characteristics similar to those observed in human trisomy 13, including bilateral polydactyly in the upper limbs, a patent foramen ovale, and pyelectasis. Molecular DNA analysis using human chromosome 13 markers was consistent with the affected infant inheriting two copies of chromosome 17 derived from the same parental chromosome. This trisomy was, therefore, due to either an error in meiosis II or the result of postzygotic nondisjunction. The parental origin, however, could not be determined.  相似文献   
2.
Aneuploid cells are frequently observed in human tumors, suggesting that aneuploidy may play an important role in the development of cancer. In this review, I discuss the processes that may give rise to aneuploid cells in normal tissue and in tumors. Aneuploid cells may arise directly from diploid cells through errors in chromosome segregation, as a consequence of incorrect microtubule-kinetochore attachments, or through failure of the spindle checkpoint. A second route to formation of aneuploid cells is through a tetraploid intermediate, where division of tetraploid cells can yield very high rates of chromosome missegregation as a consequence of multipolar spindle formation. Diploid cells may become tetraploid through a variety of mechanisms, including endoreduplication, cell fusion, and cytokinesis failure. Although aneuploid cells may arise from either diploid or tetraploid cells, the fate of the resulting aneuploid cells may be distinct. It is therefore important to understand the different pathways that can give rise to aneuploid cells, and how the varied origins of these cells affect their subsequent ability to survive or proliferate.  相似文献   
3.
4.
Double colour fluorescence in situ hybridization with sex chromosome probes was applied on sperm cells of five Swedish Holstein‐Friesian bulls. It was demonstrated that cosmids with strong fluorescence signals and scraped chromosomes can successfully be used as markers in this type of study. X and Y segregated as expected according to a 1:1 ratio, and there were no interindividual variations. There was a tendency for there to be more Y‐ than X‐bearing spermatozoa, but this bias was assumed to be due to the markers used. Disomic spermatozoa occurred with a frequency of more than 0.1 % (0.067% XX, 0.029% YY, and 0.029% XY), which is considerably lower than the frequency in humans. Diploid sperm cells occurred with a frequency of 0.05 %. Mol. Reprod. Dev. 53:407–412, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   
5.
It has been known for decades that the maize B chromosome undergoes nondisjunction at the second pollen mitosis.Fluorescence in-situ hybridization (FISH) was used to undertake a quantitative study of maize plants with differing numbers of B chromosomes to observe if instability increases by increasing B dosage in root tip tissue.B chromosome nondisjunction was basically absent at low copy number,but increased at higher B numbers.Thus,B nondisjunction rates are dependent on the dosage of B's in the sporophyt...  相似文献   
6.
Sporophytic nondisjunction of the maize B chromosome at high copy numbers   总被引:1,自引:0,他引:1  
It has been known for decades that the maize B chromosome undergoes nondisjunction at the second pollen mitosis.Fluorescence in-situ hybridization(FISH)was used to undertake a quantitative study of maize plants with differing numbers of B chromosomes to observe if instability increases by increasing B dosage in root tip tissue.B chromosome nondisjunction was basically absent at low copy number,but increased at higher B numbers.Thus,B nondisjunction rates are dependent on the dosage of B's in the sporophyte.Differences in nondisjunction were also documented between odd and even doses of the B.In plants that have inherited odd humbered doses of the B chromosome,B loss is nearly twice as likely as B gain in a somatic division.When comparing plants with even doses of B's to plants with odd doses of B's,plants with even numbers had a significantly higher chance to increase in number.Therefore,the B's nondisjunctive capacity,previously thought to be primarily restricted to the gametophyte,is present in sporophytic cells.  相似文献   
7.
8.

BACKGROUND:

Down syndrome (DS) is the most common chromosomal disorder. It has three chromosomal patterns.

AIM:

To determine the cytogenetic and comorbidity profiles of DS in the Genetic Unit of Mansoura University Children''s Hospital, Mansoura, Egypt.

MATERIALS AND METHODS:

A retrospective analysis was performed on the case records of 712 cytogenetically diagnosed cases of DS at the Genetic Unit of Mansoura University Children''s Hospital, Egypt, during a 10-year period.

RESULTS:

About 19% of the cases had one or more cardiac anomalies and about 8% were hypothyroid. Nondisjunction was the most common type of abnormality, followed by translocation and lastly mosaic: 96.1, 3.1, and 0.8%, respectively. Hypothyroidism was significantly more common in translocation and mosaic karyotypes than in the nondisjunction karyotypes. First and second birth orders were significantly higher in the translocation and mosaic groups than in the nondisjunction group. Mothers are significantly older at the index pregnancy in the nondisjunction group than in the other two groups. We compared our findings with those of previous studies.

CONCLUSION:

Knowing karyotype of DS will help in genetic counseling of the parents. Wide-scale national community-based survey with DS registry could help in estimating the size of the problem.  相似文献   
9.

BACKGROUND:

The 5,10-methylenetetrahydrofolate reductase (MTHFR) polymorphisms and low folate levels are associated with inhibition of DNA methyltransferase and consequently DNA hypomethylation. The expanding spectrum of common conditions linked with MTHFR polymorphisms includes certain adverse birth outcome, pregnancy complications, cancers, adult cardiovascular diseases and psychiatric disorders, with several of these associations remaining still controversial. Trisomy 21 or Down syndrome (DS) is the most common genetic cause of mental retardation. It stems predominantly from the failure of chromosome 21 to segregate normally during meiosis. Despite substantial research, the molecular mechanisms underlying non-disjunction leading to trisomy 21 are poorly understood.

MATERIALS AND METHODS:

Two common variants C677T and A1298C of the MTHFR gene were screened in 36 parents with DS children and 60 healthy couples from Tamil Nadu and Karnataka. The MTHFR genotypes were studied by RFLP analysis of PCR-amplified products and confirmed by sequencing.

RESULTS:

The CT genotype was seen in three each (8.3%) of case mothers and fathers. One case father showed TT genotype. All the control individuals exhibited the wild type CC genotype. A similar frequency for the uncommon allele C of the second polymorphism was recorded in case mothers (0.35) and fathers (0.37) in comparison with the control mothers (0.39) and fathers (0.37).

CONCLUSION:

This first report on MTHFR C677T and A1298C polymorphisms in trisomy 21 parents from south Indian population revealed that MTHFR 677CT polymorphism was associated with a risk for Down syndrome.  相似文献   
10.
T. H. Morgan, A. H. Sturtevant, H. J. Muller and C. B. Bridges published their comprehensive treatise The Mechanism of Mendelian Heredity in 1915. By 1920 Morgan's ``Chromosome Theory of Heredity' was generally accepted by geneticists in the United States, and by British geneticists by 1925. By 1930 it had been incorporated into most general biology, botany, and zoology textbooks as established knowledge. In this paper, I examine the reasons why it was accepted as part of a series of comparative studies of theory-acceptance in the sciences. In this context it is of interest to look at the persuasiveness of confirmed novel predictions, a factor often regarded by philosophers of science as the most important way to justify a theory. Here it turns out to play a role in the decision of some geneticists to accept the theory, but is generally less important than the CTH's ability to explain Mendelian inheritance, sex-linked inheritance, non-disjunction, and the connection between linkage groups and the number of chromosome pairs; in other words, to establish a firm connection between genetics and cytology. It is remarkable that geneticists were willing to accept the CTH as applicable to all organisms at a time when it had been confirmed only for Drosophila. The construction of maps showing the location on the chromosomes of genes for specific characters was especially convincing for non-geneticists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号