首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
In previous studies, three different strains (BrG1, BrG2, and BrG3) of ferrous iron-oxidizing, nitrate-reducing bacteria were obtained from freshwater sediments. All three strains were facultative anaerobes and utilized a variety of organic substrates and molecular hydrogen with nitrate as electron acceptor. In this study, analyses of 16S rDNA sequences showed that strain BrG1 was affiliated with the genus Acidovorax, strain BrG2 with the genus Aquabacterium, and strain BrG3 with the genus Thermomonas. Previously, bacteria similar to these three strains were detected with molecular techniques in MPN dilution series for ferrous iron-oxidizing, nitrate-reducing bacteria inoculated with different freshwater sediment samples. In the present study, further molecular analyses of these MPN cultures indicated that the ability to oxidize ferrous iron with nitrate is widespread amongst the Proteobacteria and may also be found among the Gram-positive bacteria with high GC content of DNA. Nitrate-reducing bacteria oxidized ferrous iron to poorly crystallized ferrihydrite that was suitable as an electron acceptor for ferric iron-reducing bacteria. Biologically produced ferrihydrite and synthetically produced ferrihydrite were both well suited as electron acceptors in MPN dilution cultures. Repeated anaerobic cycling of iron was shown in a coculture of ferrous iron-oxidizing bacteria and the ferric iron-reducing bacterium Geobacter bremensis. The results indicate that iron can be cycled between its oxidation states +II and +III by microbial activities in anoxic sediments.  相似文献   
2.
Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
3.
Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SRT = DSM 18275 = UNIQEM U250). Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.  相似文献   
4.
Nitrate addition to oil field waters stops the biogenic formation of sulfide because the activities of nitrate-reducing bacteria (NRB) suppress the activities of sulfate-reducing bacteria (SRB). In general, there are two types of NRB — the heterotrophic NRB and the chemolithotrophic NRB. Within the latter group are the nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). To date, no study has specifically addressed the roles of these different NRB in controlling sulfide concentrations in oil field produced waters. This study used different culture media to selectively enumerate heterotrophic NRB and NR-SOB by most probable number (MPN) methods. Produced waters from three sulfide-containing western Canadian oil fields were amended with nitrate as an electron acceptor, but no exogenous electron donor was added to the serum bottle microcosms. Changes in the chemical and microbiological characteristics of the produced waters were monitored during incubation at 21°C. In less than 4 days, the sulfide was removed from the waters from two of the oil fields (designated P and C), whereas nearly 27 days were required for sulfide removal from the water from the third oil field (designated N). Nitrate addition stimulated large increases in the number of the heterotrophic NRB and NR-SOB in the waters from oil fields P and C, but only the NR-SOB were stimulated in the water from oil field N. These data suggest that stimulation of the heterotrophic NRB is required for rapid removal of sulfide from oil field-produced waters. Received 25 March 2002/ Accepted in revised form 10 June 2002  相似文献   
5.
Oil fields that use water flooding to enhance oil recovery may become sour because of the production of H2S from the reduction of sulfate by sulfate-reducing bacteria (SRB). The addition of nitrate to produced waters can stimulate the activities of nitrate-reducing bacteria (NRB) and control sulfide production. Many previous studies have focused on chemolithotrophic bacteria that can use thiosulfate or sulfide as energy sources while reducing nitrate. Little attention has been given to heterotrophic NRB in oil field waters. Three different media were used in this study to enumerate various types of planktonic NRB present in waters from five oil fields in western Canada. The numbers of planktonic SRB and bacteria capable of growth under aerobic conditions were also determined. In general, microbial numbers in the produced waters were very low (<10 ml−1) in samples taken near or at wellheads. However, the numbers increased in the aboveground facilities. No thiosulfate-oxidizing NRB were detected in the oil field waters, but other types of NRB were detected in 16 of 18 produced water samples. The numbers of heterotrophic NRB were equal to or greater than the number of sulfide-oxidizing, chemolithotrophic NRB in 12 of 15 samples. These results showed that each of the oil fields contained NRB, which might be stimulated by nitrate amendment to control H2S production by SRB. Journal of Industrial Microbiology & Biotechnology (2002) 29, 83–92 doi:10.1038/sj.jim.7000274 Received 20 February 2002/ Accepted in revised form 14 May 2002  相似文献   
6.
We compared the response at neutral pH of some denitrifiers to different electron donors such as reduced sulfur (pyrite, S(0), and marcasite) and reduced Fe. Chemolithoautotrophic oxidation of pyrite with nitrate as electron acceptor was not possible when the pyrite was in a pure crystalline form, whereas oxidation of synthesized FeS2 of low crystallinity and of S(0) with nitrate as electron acceptor was possible. Neither nitrite nor sulfate was formed when Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 was tested. Microbial reduction of nitrate appears to be induced via S oxidation but not via Fe oxidation.  相似文献   
7.
Nitrate and Fe(III) are two terminal electron acceptors in anaerobic respiration by microorganisms growing in the anoxic soil or sediment environment. In the current paper a facultative anaerobic dissimilatory Fe(III)- and nitrate-reducing bacterium was isolated from the Linchong tailings, a skarn-type copper mine tailings, located in Anhui. Skarn often formed at the contact zone between intrusions of granitic magma bodies into contact with carbonate sedimentary rocks. This made the tailings possessed strong acid neutralizing capacity and pH of the pore water was 6.8–8.6. The isolate, which was designated strain CW (CCTCC AB 2013114), was a gram-negative rod bacterium and belonged to the gamma subgroup p of the proteobacteria, closely (99.0%) related to Pseudomonas stutzeri. In defined medium, strain CW was shown to grow anaerobically with the acetate using the ferric iron or nitrate as the electron acceptors. Results also showed that strain CW could not grow in the presence of ferrous iron and nitrite.  相似文献   
8.
Abstract

The Changjiang estuary and its adjacent East China Sea (ECS) have been considered as one of the most dynamic areas significantly contributing to elemental exchanges globally. The purpose of this study was to understand the alteration of microbial consortia at the interface of riverine and coastal environments in relation to environmental variations as well as their roles in biogeochemical cycling at this dynamic region. We sampled surface sediment samples at 4 stations from the estuary to coastal regions of the ECS. Along with collections of physicochemical parameters, we sequenced bacterial 16S rRNA genes of clones from each sample. Results showed a distinct transition of bacterial community from typical freshwater sediment phyla (e.g., Betaproteobacteria and Firmicutes) to those commonly inhabited in saline environments (e.g., Deltaproteobacteria and Gammaproteobacteria). The bacterial group at the transition zone characterized by high accumulation of organic matters and intense mixing of riverine and coastal waters was most diverse. Bacterial community structures at two ECS stations showed a similar pattern but contained different dominant taxa, shifting from Deltaproteobacteria-affiliated sulfate-reducing bacteria at the station closer to the shore to Gammaproteobacteria-affiliated nitrate-reducing bacteria further offshore. It suggested that the sedimentary bacterial community structure was related to salinity, sediment type, and substrate availability and composition.  相似文献   
9.
In order to develop effective bioremediation strategies for radionuclide contaminants, the composition and metabolic potential of microbial communities need to be better understood, especially in highly contaminated subsurface sediments for which little cultivation-independent information is available. In this study, we characterized metabolically active and total microbial communities associated with uranium-contaminated subsurface sediments along geochemical gradients. DNA and RNA were extracted and amplified from four sediment-depth intervals representing moderately acidic (pH 3.7) to near-neutral (pH 6.7) conditions. Phylotypes related to Proteobacteria (Alpha-, Beta-, Delta- and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Firmicutes and Planctomycetes were detected in DNA- and RNA-derived clone libraries. Diversity and numerical dominance of phylotypes were observed to correspond to changes in sediment geochemistry and rates of microbial activity, suggesting that geochemical conditions have selected for well-adapted taxa. Sequences closely related to nitrate-reducing bacteria represented 28% and 43% of clones from the total and metabolically active fractions of the microbial community, respectively. This study provides the first detailed analysis of total and metabolically active microbial communities in radionuclide-contaminated subsurface sediments. Our microbial community analysis, in conjunction with rates of microbial activity, points to several groups of nitrate-reducers that appear to be well adapted to environmental conditions common to radionuclide-contaminated sites.  相似文献   
10.
The degradation of N,N-dimethylformamide (DMF) by bacterial consortia was investigated under aerobic, fermentative and nitrate-reducing conditions and a variety of salt concentrations (0.2%, 4% and 7% NaCl w/v) and pH values (5 and 7). Optimization of degradation conditions was studied to provide information and recommendations for large-scale biological treatment processes. Under aerobic conditions, mineralization of DMF (200 mg l−1, 2.7 mM) was achieved under all combinations of salinity and pH. The rate of bacterial growth decreased with increasing salinity. Changes in the salt concentration and pH still resulted in mineralization and unchanged yield of bacterial cells. At 0.2% NaCl and either pH 5 or 7, growth occurred on DMF in the range 0.2–1 g l−1. However, cell yield decreased with increasing concentrations of DMF. Under conditions of 0.2% NaCl, pH 7 and 4% NaCl, pH 5, growth on DMF at 5 g l−1 resulted in the production of an intermediate that was detected using gas chromatography (GC). It is proposed that the intermediate was dimethylamine, and its persistence in growth media was attributed to suppressed growth as a result of an increase in pH. A culture capable of degrading DMF under nitrate-reducing conditions was obtained at 0.2% NaCl and pH 7, but not at more saline and acidic conditions. Growth and degradation of DMF were considerably slower under these conditions compared with aerobic conditions. Fermentative degradation of DMF was not observed. Journal of Industrial Microbiology & Biotechnology (2000) 25, 8–16. Received 14 July 1999/ Accepted in revised form 30 March 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号