首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   621篇
  免费   15篇
  国内免费   8篇
  2023年   8篇
  2022年   11篇
  2021年   13篇
  2020年   20篇
  2019年   24篇
  2018年   34篇
  2017年   6篇
  2016年   6篇
  2015年   15篇
  2014年   53篇
  2013年   56篇
  2012年   27篇
  2011年   41篇
  2010年   25篇
  2009年   46篇
  2008年   25篇
  2007年   21篇
  2006年   24篇
  2005年   24篇
  2004年   10篇
  2003年   9篇
  2002年   11篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   7篇
  1997年   10篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   13篇
  1983年   5篇
  1982年   6篇
  1981年   5篇
  1980年   6篇
  1979年   8篇
  1978年   4篇
  1977年   8篇
  1976年   6篇
  1975年   6篇
  1974年   2篇
  1973年   8篇
  1971年   2篇
排序方式: 共有644条查询结果,搜索用时 15 毫秒
1.
《Cell reports》2020,30(1):112-123.e4
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   
2.
The -aminolevulinic acid dehydratase activity was irreversibly inactivated by irradiation of the enzyme in presence of flavin mononucleotide. The loss of enzyme activity was dependent on time of irradiation, concentration of FMN and intensity of irradiance. It required oxygen and was markedly enhanced in heavy water. The presence of levulinic acid (a competitive inhibitor of -ALAD) during irradiation prevented the inactivation considerably indicating photooxidative damage at or near the active site. Superoxide dismutase, sodium benzoate and sodium formate offered no protection, but singlet oxygen quenchers like azide and tryptophan were effective. NADH, electron donor to excited flavins, also prevented the loss of enzyme activity. These results indicate that singlet oxygen produced by light absorption of FMN was responsible for the photooxidative inhibition of the enzyme.Abbreviations ALAD -aminolevulinic acid dehydratase - FMN flavin mononucleotide - O2 - superoxide - H2O2 hydrogen peroxide - 102 singlet oxygen - LA levulinic acid - PBG porphobilinogen - BSA bovine serum albumin - BME 2-mercaptoethanol - SOD superoxide dismutase - pHMB para-hydroxymercuribenzoate - DTT dithiothreitol - FAD flavin adenine dinucleotide - NADH nicotinamide adenine dinucleotide  相似文献   
3.
A single intraperitoneal injection of DL-methionine (500 mg/kg body wt.) to adult male Wistar rats was shown to significantly induce all the components of the hepatic microsomal mixed function oxidase system such as NADPH cytochrome C reductase activity, cytochromes P-450 and b5, as well as activities of drug metabolizing enzymes such as aminopyrine demethylase and uridine 5′ -diphosphate-glucuronosyltransferase. Combined administration of nicotinamide (250 mg/kg body wt.) and DL-methionine (500 mg/kg body wt.) was shown to bring about an additional increase (25-30%) in the activities of these enzymes as compared to their induction on independent administration of the two endobiotics. In rats bearing Yoshida sarcoma (ascites) tumour as well as in normal rats injected with serum from tumour bearing animals, the decreased activities of hepatic mixed function oxidases could be restored to their normal levels by administration of DL-methionine (500 mg/kg body wt.) to these rats. Whereas actinomycin D (1 mg/kg body wt.) had no effect on the increased incorporation of [14C] labelled leucine into microsomal proteins following administration of nicotinamide, the enhanced incorporation of the label following DL-methionine administration was completely inhibited by the same dose of actinomycin D. Administration of cycloheximide (0·5 mg/kg body wt.) to rats could completely inhibit the increased incorporation of [14C] leucine into hepatic microsomal proteins following independent administration of nicotinamide and DL-methionine. Similar inhibitory pattern with actinomycin D and cycloheximide was also demonstrated in case of induction of NADPH cytochromeC reductase activity by both these endobiotics.  相似文献   
4.
GST activities against 1-Chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) were measured in isolated and cultured adult rat hepatocytes. Within 24 h in culture, both GST activities decreased to about 70% and either stabilized at this level (CDNB) or recovered (DCNB) to the initial level. Use of hyaluronidase in addition to collagenase during the isolation of the cells strongly reduced both activities and its stimulation by various drugs for up to 168 h. The hormones insulin, glucagon, triiodothyronine, estradiol, testosterone, and progesterone did not affect GST activity, while dexamethasone showed some interference. In the presence of dexamethasone the activity against CDNB was mainly stimulated by the combination of methylcholanthrene (MC) and phenobarbital (PB) to about 260% within 168 h. The activity against DCNB was stimulated predominantly by MC alone reaching 170% after 168 h. Quantification of the GST subunits Ya, Yb1 and Yp by an ELISA technique revealed a strong decrease of Ya, a transient increase of Yb1 after 24 h followed by a moderate decrease, and a stable low level of the transformation marker Yp during cultivation. The level of Ya was markedly induced by PB, particularly in combination with MC. The level of Yb1 was equally induced by MC or PB with no synergistic effect. Yp was not affected by these drugs. None of the hormones affected the level of these GST subunits. These results indicate that the physiological type of regulation of the GSTs is maintained during primary culture and no signs of dedifferentiation or transformation are observed. Furthermore, they demonstrate that the interaction of drugs and hormones and their inducing potential can be efficiently studied in the cultured hepatocytes.Abbreviations ABTS 2,2-Azino-bis(3-ethylbenzthiazoline-6-sulfonate) - CDNB I-Chloro-2,4-dinitrobenzene - DCNB 1,2-dichloro-4-nitrobenzene; DEX, dexamethasone - DMSO dimethylsulfoxide - GST glutathione Stransferase - MC methylcholanthrene - N, NIC nicotinamide - -NF -naphthoflavone - PB phenobarbital - PBS phosphate buffered saline  相似文献   
5.
Pulmonary alveoler macrophages exposedto very short chrysotile asbestos fibers present a typical cytotoxic response: extracellular releases of lactate dehydrogenase and -galactosidase, and a decrease in cellular ATP content. The objective of this study was to determine if nicotinamide and 3-aminobenzamide, two inhibitors of the ADP-ribosyl transferase, could modify the in vitro toxicity of chrysotilee fibers. After 30 min of pre-exposure with each of the two inihibitors, pulmonary alveolar macrophage monolayers were concominantly exposed for 18 hours to 50g of fibers. It was observed that, in a dose-effect relationship (5 to 30 mM), nicotinamide was very effective in reducing the extracellular liberation of the marker enzymes. At 30 mM, the enzyme releases in the medium had returned to control values; the restoration of cell viability was confirmed by ATP levels. Up to 5 mM 3-aminobenzamide did not provide any protection against chrysotile cytotoxicity. Nicotinic acid, a structural analogue of nicotinamide, but not an inhibitor of the ADP-ribosyl transferase, also showed no protective effect. Nicotinamide and 3-aminobenzamide increased the intracellular NAD+ pools, respectively by 350% and 250%. However, with or without additives, the chrysotile fibers caused a constant and significant decrease in NAD+ levels (40–55 pmoles). These results suggest that the inhibition of the nuclear ADP-ribosyl transferase is not the major mechanism by which nicotinamide protects pulmonary alveolar macrophages against the chrysotile asbestos fibers.Abbreviations 3-AB 3-aminobenzamide - ADPRT ADP-ribosyl transferase - -GAL -galactosidase - DTT dithiothreitol - FBS fetal bovine serum - FMN flavin mononucleotide - HEPES N-2-hydroxyethyl piperazine-N-2-ethanesulfonic acid - LDH lactate dehydrogenase - NAD+ nicotinamide adenine dinucleotide (oxidized form) - NADH nicotimide adenine dinucleotide (reduced forms) - NADPH nicotimide adenine dinucleotide phosphate (reduced form) - NAM nicotinamide - NIC nicotinic acid - ORS oxygen radical species - PAM pulmonary alveolar macrophages - S.E. standard error of the mean - TAPS tris (hydroxymethyl) methylamino-propane sulfonic acid - TRIS tris (hydroxymethyl) aminomethane - VSF very short chrysotile fibers  相似文献   
6.
Chronic alcohol feeding causes microsomal induction including increased generation of hydroxyl radicals. Ethanol induced liver injury may be mediated by lipid peroxidation for which hydroxyl radicals have been proposed as major mediators. Ethanol promotes lipid peroxidation when given acutely but also may serve as a hydroxyl radical scavenger. Therefore, we studied the acute and chronic effects of alcohol on microsomal lipid peroxidation and hydroxyl radical generation. Chronic alcohol feeding in rats increased microsomal generation of hydroxyl radicals but lipid peroxidation of endogenous lipid was inversely related to hydroxyl radical generation. Ethanol (50mM) had a slight inhibitory effect on hydroxyl radical production in peroxidizing microsomes, no effect on endogenous lipid peroxidation and enhanced the lysis of RBCs added as targets of peroxidation. Enhanced microsomal generation of hydroxyl radicals following chronic alcohol feeding is not an important mediator of lipid peroxidation.  相似文献   
7.
NAD glycohydrolases are the longest known enzymes that catalyze ADP-ribose transfer. The function of these ubiquitous, membrane-bound enzymes has been a long standing puzzle. The NAD glycohydrolase are briefly reviewed in light of the discovery by our laboratory that NAD glycohydrolases are bifunctional enzymes that can catalyze both the synthesis and hydrolysis of cyclic ADP-ribose, a putative second messenger of calcium homeostasis.Abbreviations NADase nicotinamide adenine dinucleotide glycohydrolase - NAD nicotinamide adenine dinucleotide - ADP-ribose adenosine diphosphoribose - cADPR cyclic adenosine diphosphoribose  相似文献   
8.
9.
Significant changes in the intracellular concentrations of adenosine phosphates and nicotinamide adenine dinucleotides were observed during fermentation of grape must by three different strains ofSaccharomyces cerevisiae: S. cerevisiae var.cerevisiae, a typical fermentative yeast strain and two flor-veil-forming strains,S. cerevisiae var.bayanus andS. cerevisiae var.capensis. The intracellular concentration of ATP was always higher inS. cerevisiae var.cerevisiae than in the flor-veil-forming strains. NAD+ and NADP+ concentrations decreased at faster rates in the flor-veil-forming yeasts than in the other yeast but NADH concentration was the same in all yeasts for the first 10 days of fermentation. NADPH concentration was always lower inS. cerevisiae var.cerevisiae than in the other yeasts and this yeast also showed higher rates of growth and fermentation during the early stages of the fermentation and the presence of non-viable cells at the end of fermentation. In contrast, the flor-veil-forming strains maintained growth and fermentation capabilities for a relatively long time and viable cells were present throughout the entire fermentation process (31 days).The authors are with the Department of Microbiology, Faculty of Sciences, University of Cordoba, Avda. San Alberto Magno s/n, 14004-Córdoba, Spain  相似文献   
10.
The mechanism of the aniline hydroxylase activity of methaemoglobin in a monooxygenase system consisting of NADH as electron donor, riboflavin, FAD, FMN or methylene blue as electron carrier and methaemoglobin as the terminal oxidase has been studied. Hydrogen peroxide is produced from oxygen in a methaemoglobin-independent process. 4-Aminophenol is subsequently produced peroxidatively by an NADH-dependent process; NADH prevents a further oxidation of 4-aminophenol in the presence of haemoglobin. In the absence of electron carrier, NADH slowly reduces haemoglobin and then oxyhaemoglobin reacts with aniline to give 4-aminophenol. In the absence of electron donor and electron carrier, oxyhaemoglobin and aniline give rise to the reversible production of 4-aminophenol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号