首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   4篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2004年   2篇
  2002年   6篇
  2001年   1篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1984年   6篇
  1983年   10篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
排序方式: 共有93条查询结果,搜索用时 46 毫秒
1.
胆碱能神经对人餐后神经降压素释放的影响   总被引:2,自引:0,他引:2  
本文比较了6名健康成人进食、餐前肌注阿托品以及单纯咀嚼食物后的血浆神经降压素样免疫活性物质(NTLI)水平的变化,以探讨胆碱能神经对神经降压素释放的影响。用放射免疫测定法分别测定NTLI和胰多肽(PP)的含量,以便同时比较两者释放的状态。6人的基础血浆NTLI和PP的水平平均分别为15.7±2.4和16.6±9 7pmol/L。进食后,血浆NTLI和PP水平均显著增高,并呈双相反应。第一个血浆NTLI高峰平均为60.7±13.2pmol/L,出现于餐后的20min。餐后90min,又出现另一个高峰,其平均水平为58.8±8.2pmol/L。在进食前肌注阿托品1mg,餐后的第一个血浆NTLI高峰消失,而第二个高峰仍存在。单纯咀嚼食物后,血浆PP水平明显增高,而对NTLI的释放无刺激作用。本文结果提示,餐后早期的神经降压素释放的调节是由非迷走胆碱能神经参与的,而后期的释放不受胆碱能神经的影响。  相似文献   
2.
Neurotensin stimulates pancreatic secretion directly and by potentiating the effect of secretin. Neurotensin also inhibits gastric secretion. Secretin inhibits gastric secretion as well, but whether it also interacts with neurotensin is not known. Secretin is known to inhibit gastric mucosal blood flow (GMBF). The effect of neurotensin on GMBF is not known. Acid secretion (triple lumen perfused orogastric tube) and GMBF ([14C]aminopyrine clearance) were therefore measured in 6 subjects during neurotensin, secretin and neurotensin plus secretin infusions. Neurotensin plus secretin reduced acid secretion by a median 130 (range 34-394) mumol/min which was significantly greater than either neurotensin at 36 (7-67) mumol/min or secretin 54 (20-347) mumol/min alone (P less than 0.05). This effect appeared independent of GMBF. Neurotensin plus secretin reduced GMBF by 14 (12-27) ml/min but not significantly more than neurotensin at 11 (3-20) ml/min or secretin 18 (2-27) ml/min alone. Further, there was no correlation between changes in acid output and GMBF during infusion of the peptides. We conclude that the inhibitory effects of neurotensin and secretin on gastric secretion are at least additive and together they may function as an 'enterogastrone'.  相似文献   
3.
In the present investigation the effect of neurotensin on pancreatic secretion of isolated pancreatic lobules from the rat was examined. We found a dose- and time-dependent stimulation of amylase release beginning with a concentration of 10(-9) M neurotensin. This response was potentiated by the cholinergic agonist carbachol, the gastrointestinal peptide secretin, and the CCK analogue caerulein. As we found neurotensin-immunoreactive nerves within the pancreas and as neurotensin-like immunoreactivity is present in the circulation (found previously), neurotensin may well be a further peptide taking part in the regulation of exocrine pancreatic secretion either as a hormone or a neurotransmitter. Neurotensin would then cooperate with cholinergic mechanisms, secretin, and CCK.  相似文献   
4.
The tissue content of up to eight neuropeptides, viz bombesin (BOM), cholecystokinin (CCK-8), neurotensin (NT), neuropeptide Y (NPY), peptide histidine isoleucine amide (PHI), somatostatin (SRIF), substance P (SP) and vasoactive intestinal polypeptide (VIP), in rat hypothalami removed at various times of the day, was measured using specific radioimmunoassays. There was significant variation in the content of BOM, CCK-8, NT, PHI, SP and VIP across a 24-h period. The levels of BOM, CCK-8 and NT were lowest around the onset of darkness (1900 h) and rose throughout the night to reach a peak around the time of lights on. Hypothalamic content of all eight peptides fell between 0700 h and 1300 h by an average of 45 +/- 4%. Basal release of these peptides, as well as that in the presence of 48 mM potassium (K+), was measured from hypothalami removed between 0700 and 1900 h and incubated in vitro in a CSF-like medium. Basal secretion of NT significantly increased, whilst that of CCK-8 significantly decreased over the same period. There was no significant change in the basal release of the other neuropeptides. The release in the presence of 48 mM K+ of SP decreased significantly during the day, whilst that of VIP significantly increased. There was also a significant change in the stimulated release of BOM, levels falling during the morning and rising again at 1900 h. 48 mM K+ caused a significant increase in the release of SRIF and SP at all times tested. Whilst 48 mM K+ induced a significantly higher release of CCK-8 and NT in the morning, this stimulus was ineffective in the evening. The contrary was true in the case of BOM, NPY and VIP, where a significant stimulation was induced only at 1900 h. The possible implications of these findings are discussed.  相似文献   
5.
The effects of forskolin and cholera toxin on the regulation of cAMP release were studied in a neurotensin-secreting rat C-cell line. The interaction of these agents with norepinephrine, a potent neurotensin secretagogue, was also investigated. Forskolin stimulated cAMP release 10(2)-10(3) fold while it increased neurotensin release 2-3 fold. Cholera toxin caused a 10(2)-10(3) fold increase in cAMP release and had no effect on neurotensin release. We conclude that the 44-2 C-cells provide a new model for studying the regulation of the concomitant (via forskolin) or independent (via cholera toxin) secretion of cyclic AMP and/or neurotensin.  相似文献   
6.
Neurotensin (NT) is a tridecapeptide hormone in the periphery and neurotransmitter in the brain that principally activates three receptor subtypes, named NTS1, NTS2, and NTS3. Since little is known about its structure in the presence of its principal receptor NTS1, we determined it using the key domain of the receptor, i.e. the third extracellular loop. We conclude the following: (i) for the receptor fragment, NT binding modifies its central part, underlying the great flexibility and adaptability of this region; (ii) for bound NT, the extended conformation of its C-terminus is confirmed for the first time in experimental conditions and in the presence of a part of the receptor; and (iii) despite some substitutions, the human receptor residues that are involved in the interaction with NT could be similar to those of the rat receptor which play an important role in NT binding.  相似文献   
7.
Calcium signaling is a key regulator of processes important in differentiation. In colon cancer cells differentiation is associated with altered expression of specific isoforms of calcium pumps of the endoplasmic reticulum and the plasma membrane, suggesting that differentiation of colon cancer cells is associated with a major remodeling of calcium homeostasis. Purinergic and neurotensin receptor activation are known regulators of cytosolic free Ca2+ levels in colon cancer cells. This study aimed to assess changes in cytosolic free Ca2+ levels in response to ATP and neurotensin with differentiation induced by sodium butyrate or culturing post-confluence. Parameters assessed included peak cytosolic free Ca2+ level after activation; time to reach peak cytosolic free Ca2+ and the EC50 of dose response curves. Our results demonstrate that differentiation of HT-29 colon cancer cells is associated with a remodeling of both ATP and neurotensin mediated Ca2+ signaling. Neurotensin-mediated calcium signaling appeared more sensitive to differentiation than ATP-mediated Ca2+ signaling.  相似文献   
8.
9.
Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine‐related measures change throughout development in song‐control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song‐control regions of male zebra finches in four stages of the song learning process: pre‐subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre‐subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671–686, 2018  相似文献   
10.
Several lines of anatomical, neurochemical, electrophysiological, and behavioral evidence suggest the existence of physiological interactions between neurotensin (NT) and the brain dopaminergic systems. Thus, NT has been shown to exert a neuroleptic-like action and could be implicated in the pathogenesis and treatment of schizophrenia. It is thus of particular importance to develop in vitro cell culture systems as models to study such interactions. Rat adrenal pheochromocytoma PC12 cells, which expressed high levels of tyrosine hydroxylase, were used in the present study. In contrast to rat brain cells in primary cultures, PC12 cells did not express functional NT receptors. However, they were able to express both NTmRNA and NT in response to NGF, forskolin, and dexamethasone. Those neurochemical modifications furthermore may be related to changes in the morphology of the PC12 cells in response to NGF, forskolin, and dexamethasone alone or in combination. These data suggest that PC12 cells may provide a useful model to study in vitro the regulation of both catecholamine and neurotensin phenotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号