首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   3篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
  1993年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
2.
3.
1. The ability to target specific neurons can be used to produce selective neural lesions and potentially to deliver therapeutically useful moieties for treatment of disease. In the present study, we sought to determine if a monoclonal antibody to the dopamine transporter (anti-DAT) could be used to target midbrain dopaminergic neurons.2. The monoclonal antibody recognizes the second, large extracellular loop of DAT. The antibody was conjugated to the ribosome-inactivating protein saporin, and stereotactically pressure microinjected into either the center of the striatum or the left lateral ventricle of adult, male Sprague-Dawley rats.3. Local intrastriatal injections produced destruction of dopaminergic neurons in the ipsilateral substantia nigra consistent with suicide transport of the immunotoxin. Intraventricular injections (i.c.v.) produced significant loss of dopaminergic neurons in the substantia nigra and ventral tegmental area bilaterally without evident damage to any other aminergic structures such as the locus coeruleus and raphé nuclei. To confirm the anatomic findings, binding of [3H]mazindol to DAT in the striatum and midbrain was assessed using densitometric analysis of autoradiograms. Anti-DAT-saporin injected i.c.v. at a dose of 21 g, but not 8 g, produced highly significant decreases in mazindol binding consistent with loss of the dopaminergic neurons.4. These results show that anti-DAT can be used to target midbrain dopaminergic neurons and that anti-DAT-saporin may be useful for producing a lesion very similar to the naturally occurring neural degeneration seen in Parkinson's disease. Anti-DAT-saporin joins the growing list of neural lesioning agents based on targeted cytotoxins.  相似文献   
4.
5.
Despite intense academic debate in the recent past over the use of ‘sham surgery’ control groups in research, there has been a recent resurgence in their use in the field of neurodegenerative disease. Yet the primacy of ethical arguments in favour of sham surgery controls is not yet established. Preliminary empirical research shows an asymmetry between the views of neurosurgical researchers and patients on the subject, while different ethical guidelines and regulations support conflicting interpretations. Research ethics committees faced with a proposal involving sham surgery should be aware of its ethical complexities. An overview of recent and current placebo‐controlled surgical trials in the field of Parkinson's Disease is provided here, followed by an analysis of the key ethical issues which such trials raise.  相似文献   
6.
The concentration of free amino acids was measured in 41 surgically removed samples of human epileptogenic brain and in 7 specimens of non-epileptic brain tissue, removed during surgery for meningiomas, etc. The material was subdivided according to the neuropathological diagnosis: mild cortical dysplasia (MCD), gliosis astrocytoma infiltration and a histologically heterogeneous group. The non-tumoral epileptogenic samples had five times higher than normal concentration of ethanolamine and 50% elevated concentration of glycine. The concentration of other neurotransmitter amino acids did not differ markedly between epileptogenic and non-epileptic samples. The concentration of neurotransmitter amino acids showed a strong correlation with the enzyme neuron specific enolase (NSE) and were low in most samples with astrocytoma infiltration. On the other hand, tyrosine and leucine had higher concentrations in samples with lower NSE concentration. Factor analysis of the amino acids revealed four groups of covarying compounds in the brain samples, first, a neurotransmitter group, including aspartate, glutamate, GABA and phosphoethanolamine. Another group contained ethanolamine, glutamine, glycine and taurine. Factor analysis on corresponding extracellular amino acids showed two groups, the first being a neurotransmitter group, containing serine, taurine phosphoethanolamine and ethanolamine in addition to aspartate and glutamate. The other group consisted of asparagine, glycine, alanine, tyrosine, valine, phenylalanine, isoleucine and leucine.Special issue dedicated to Dr. Claude Baxter.  相似文献   
7.
Historically, the prognosis of patients with melanoma brain metastases is poor, with median overall survival (OS) of 4‐6 months. Little is known of OS in the era of modern systemic therapies and local therapy with stereotactic radiosurgery (SRS) or surgery. Patients diagnosed with melanoma brain metastases at Melanoma Institute Australia from January 2011 to December 2014 were included. OS and prognostic factors were analysed using Cox regression and Kaplan‐Meier survival analyses.355 patients were included. The median OS was 7.1 months (95% confidence interval [CI] 6.0‐8.1). Median OS differed by treatment modality: systemic therapy and SRS and/or surgery 14.9 months (95% CI 10.7‐19.0), SRS and/or surgery with or without whole brain radiotherapy (WBRT) 6.4 months (95% CI 5.4‐7.5), systemic therapy 5.4 months (95% CI 3.1‐7.7), systemic therapy and WBRT 5.2 months (95% CI 4.1‐6.4), WBRT 4.4 months (95% CI 2.4‐6.3), and best supportive care 1.8 months (95% CI 1.2‐2.3). OS for patients with melanoma brain metastases appears improved in the modern era, particularly for patients who are candidates for systemic therapy with SRS and/or surgery.  相似文献   
8.
Receptor concentration imaging (RCI) with targeted‐untargeted optical dye pairs has enabled in vivo immunohistochemistry analysis in preclinical subcutaneous tumors. Successful application of RCI to fluorescence guided resection (FGR), so that quantitative molecular imaging of tumor‐specific receptors could be performed in situ, would have a high impact. However, assumptions of pharmacokinetics, permeability and retention, as well as the lack of a suitable reference region limit the potential for RCI in human neurosurgery. In this study, an arterial input graphic analysis (AIGA) method is presented which is enabled by independent component analysis (ICA). The percent difference in arterial concentration between the image‐derived arterial input function (AIFICA) and that obtained by an invasive method (ICACAR) was 2.0 ± 2.7% during the first hour of circulation of a targeted‐untargeted dye pair in mice. Estimates of distribution volume and receptor concentration in tumor bearing mice (n = 5) recovered using the AIGA technique did not differ significantly from values obtained using invasive AIF measurements (p = 0.12). The AIGA method, enabled by the subject‐specific AIFICA, was also applied in a rat orthotopic model of U‐251 glioblastoma to obtain the first reported receptor concentration and distribution volume maps during open craniotomy.

  相似文献   

9.
Endothelial cells with tight junctions along with the basement membrane and astrocyte end feet surround cerebral blood vessels to form the blood-brain barrier1. The barrier selectively excludes molecules from crossing between the blood and the brain based upon their size and charge. This function can impede the delivery of therapeutics for neurological disorders. A number of chemotherapeutic drugs, for example, will not effectively cross the blood-brain barrier to reach tumor cells2. Thus, improving the delivery of drugs across the blood-brain barrier is an area of interest.The most prevalent methods for enhancing the delivery of drugs to the brain are direct cerebral infusion and blood-brain barrier disruption3. Direct intracerebral infusion guarantees that therapies reach the brain; however, this method has a limited ability to disperse the drug4. Blood-brain barrier disruption (BBBD) allows drugs to flow directly from the circulatory systeminto the brain and thus more effectively reach dispersed tumor cells. Three methods of barrier disruption include osmotic barrier disruption, pharmacological barrier disruption, and focused ultrasound with microbubbles. Osmotic disruption, pioneered by Neuwelt, uses a hypertonic solution of 25% mannitol that dehydrates the cells of the blood-brain barrier causing them to shrink and disrupt their tight junctions. Barrier disruption can also be accomplished pharmacologically with vasoactive compounds such as histamine5 and bradykinin6. This method, however, is selective primarily for the brain-tumor barrier7. Additionally, RMP-7, an analog of the peptide bradykinin, was found to be inferior when compared head-to-head with osmotic BBBD with 25% mannitol8. Another method, focused ultrasound (FUS) in conjunction with microbubble ultrasound contrast agents, has also been shown to reversibly open the blood-brain barrier9. In comparison to FUS, though, 25% mannitol has a longer history of safety in human patients that makes it a proven tool for translational research10-12.In order to accomplish BBBD, mannitol must be delivered at a high rate directly into the brain''s arterial circulation. In humans, an endovascular catheter is guided to the brain where rapid, direct flow can be accomplished. This protocol models human BBBD as closely as possible. Following a cut-down to the bifurcation of the common carotid artery, a catheter is inserted retrograde into the ECA and used to deliver mannitol directly into the internal carotid artery (ICA) circulation. Propofol and N2O anesthesia are used for their ability to maximize the effectiveness of barrier disruption13. If executed properly, this procedure has the ability to safely, effectively, and reversibly open the blood-brain barrier and improve the delivery of drugs that do not ordinarily reach the brain 8,13,14.  相似文献   
10.
Current clinical brain imaging techniques used for surgical planning of tumor resection lack intraoperative and real‐time feedback; hence surgeons ultimately rely on subjective evaluation to identify tumor areas and margins. We report a fluorescence lifetime imaging (FLIm) instrument (excitation: 355 nm; emission spectral bands: 390/40 nm, 470/28 nm, 542/50 nm and 629/53 nm) that integrates with surgical microscopes to provide real‐time intraoperative augmentation of the surgical field of view with fluorescent derived parameters encoding diagnostic information. We show the functionality and safety features of this instrument during neurosurgical procedures in patients undergoing craniotomy for the resection of brain tumors and/or tissue with radiation damage. We demonstrate in three case studies the ability of this instrument to resolve distinct tissue types and pathology including cortex, white matter, tumor and radiation‐induced necrosis. In particular, two patients with effects of radiation‐induced necrosis exhibited longer fluorescence lifetimes and increased optical redox ratio on the necrotic tissue with respect to non‐affected cortex, and an oligodendroglioma resected from a third patient reported shorter fluorescence lifetime and a decrease in optical redox ratio than the surrounding white matter. These results encourage the use of FLIm as a label‐free and non‐invasive intraoperative tool for neurosurgical guidance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号