首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2471篇
  免费   189篇
  国内免费   67篇
  2023年   74篇
  2022年   70篇
  2021年   123篇
  2020年   89篇
  2019年   119篇
  2018年   107篇
  2017年   64篇
  2016年   74篇
  2015年   102篇
  2014年   140篇
  2013年   163篇
  2012年   91篇
  2011年   100篇
  2010年   108篇
  2009年   104篇
  2008年   104篇
  2007年   118篇
  2006年   81篇
  2005年   90篇
  2004年   86篇
  2003年   89篇
  2002年   76篇
  2001年   80篇
  2000年   43篇
  1999年   43篇
  1998年   39篇
  1997年   31篇
  1996年   36篇
  1995年   34篇
  1994年   33篇
  1993年   21篇
  1992年   25篇
  1991年   16篇
  1990年   9篇
  1989年   18篇
  1988年   17篇
  1987年   15篇
  1986年   3篇
  1985年   8篇
  1984年   9篇
  1983年   9篇
  1982年   14篇
  1981年   12篇
  1980年   3篇
  1979年   6篇
  1977年   4篇
  1976年   4篇
  1973年   4篇
  1972年   7篇
  1971年   5篇
排序方式: 共有2727条查询结果,搜索用时 15 毫秒
1.
We studied the impulse activity of neurons of the basal and lateral amygdalar nuclei generated when experimental animals (rats) performed fast stereotyped food-procuring movements by the forelimb. Within the basolateral amygdala, there are neurons whose activity is related to different stages of getting off the food, and according to the characteristics of their spiking these neurons should be divided into a number of subpopulations. Activation forestalling the movement initiation by 0.5-1.0 sec was observed in most neurons of the basolateral amygdala; this is considered a manifestation of excitation related to a motivation component of the food-procuring behavior. Activation of amygdalar neurons following movement initiation can result from generation in this structure of additional excitation necessary for successful performance of a complete food-procuring motor cycle.  相似文献   
2.
The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges.  相似文献   
3.
《Free radical research》2013,47(6-7):451-462
Abstract

Aging and neurodegenerative diseases share oxidative stress cell damage and depletion of endogenous antioxidants as mechanisms of injury, phenomena that are occurring at different rates in each process. Nevertheless, as the central nervous system (CNS) consists largely of lipids and has a poor catalase activity, a low amount of superoxide dismutase and is rich in iron, its cellular components are damaged easily by overproduction of free radicals in any of these physiological or pathological conditions. Thus, antioxidants are needed to prevent the formation and to oppose the free radicals damage to DNA, lipids, proteins, and other biomolecules. Due to endogenous antioxidant defenses are inadequate to prevent damage completely, different efforts have been undertaken in order to increase the use of natural antioxidants and to develop antioxidants that might ameliorate neural injury by oxidative stress. In this context, natural antioxidants like flavonoids (quercetin, curcumin, luteolin and catechins), magnolol and honokiol are showing to be the efficient inhibitors of the oxidative process and seem to be a better therapeutic option than the traditional ones (vitamins C and E, and β-carotene) in various models of aging and injury in vitro and in vivo conditions. Thus, the goal of the present review is to discuss the molecular basis, mechanisms of action, functions, and targets of flavonoids, magnolol, honokiol and traditional antioxidants with the aim of obtaining better results when they are prescribed on aging and neurodegenerative diseases.  相似文献   
4.
The purpose of this study was the development of multifunctional liposomes for nasal administration of tacrine hydrochloride. Liposomes were prepared using traditional excipients (cholesterol and phosphatidylcholine), partly enriched with α-tocopherol and/or Omega3 fatty acids. This approach was chosen in order to obtain at the same time two positive results: an enhanced drug permeation through nasal mucosa and a concomitant neuroprotective effect. Several liposome formulations were prepared using the Reverse Phase Evaporation technique followed by membrane filter extrusion. In particular, liposome capacity to enhance drug permeation was evaluated by means of membrane permeation and cellular uptake studies. Furthermore, liposome effect on neuronal viability and intracellular ROS production was evaluated as well as their cytoprotective effect against oxidative stress. All liposome formulations showed a mean diameter in the range of 175?nm to 219?nm with polydispersity index lower than 0.22, a lightly negative zeta potential and excellent encapsulation efficiency. Moreover, along with good mucoadhesive properties, multifunctional liposomes showed a markedly increase in tacrine permeability, which can be related to liposome fusion with cellular membrane, a hypothesis, which was also supported by cellular uptake studies. Finally, the addition of α-tocopherol without Omega3 fatty acids, was found to increase the neuroprotective activity and antioxidant properties of liposomes.  相似文献   
5.
Summary Transection of the sciatic nerve in Rhesus monkeys and the consequent transganglionic degenerative atrophy (TDA) of central terminals of primary afferents result in transneuronal degeneration of substantia gelatinosa (SG) cells. Severe degeneration is characterized by an increased electron density of the nucleus and by conspicuous shrinkage of the cytoplasm, mitochondrial swelling, dilation of cisterns of the rough-surfaced endoplasmic reticulum, accumulation of free ribosomes and an electron-dense material in the cytoplasm. In the mild form, dilation of cisternal elements of the endoplasmic reticulum, swollen mitochondria and accumulation of free ribosomes takes place. About 10% of SG cells in segment L5 undergo the severe form whereas the rest shows signs of the mild form. Cytoplasmic alterations that occur during transneuronal degeneration seem to start at the level of subsurface cisterns. Dendrites and axons of transneuronally degenerating SG cells also show a conspicuous electron density. By analyzing the synaptic relationships of such darkened dendrites, connections in the upper dorsal horn can be deciphered. Modular units of the primary nociceptive analyzer that evaluate noxious and innocuous inputs on the basis of thin versus thick (AC/A) afferent activity and subjecting them to descending control appear to be recruited from structurally dispersed elements of synaptic glomeruli. These are arranged alongside dendritic processes of large antenna cells which relay impulses to projection cells of the spinothalamic tract.  相似文献   
6.
[3H]Flunitrazepam (FNZ) binding to cortical neurons from fetal rat brain was investigated in vitro. The use of a synthetic medium specific for neurons made it possible to plot a developmental curve of3H-FNZ binding in an almost pure neuronal culture. Detectable specific binding was present in vitro at time 0 (that is, the 16th gestational day). A progressive increase of binding, due to an increment in the number of recognition sites, was observed on the subsequent days. The affinity of the specific binding sites to3H-FNZ was enhanced by the addition of exogenous GABA, whereas the density was not affected.  相似文献   
7.
Conclusions Current neurochemical studies of the NMDA receptor macromolecular complex are yielding new insights into the interactions of the subunits of this complex and the associated potential clinical benefits of selective modulation of these subnits. Such studies offer the great potential for a new generation of pharmacotherapies for a wide range of CNS disorders, including stroke, a condition for which there is currently no effective pharmacological treatment. However, it is essential to understand that the first generation products in this area may not be optimal pharmacotherapies, such that haracterization of possible receptor subtypes and understanding the molecular biology of the component proteins of the receptor complex will be crucial in the design of the optimal pharmacological modulators of the NMDA receptor complex.Special issue dedicated to Dr. Erminio Costa  相似文献   
8.
The vacuolar degeneration of central myelin was produced in Sprague-Dawley rats by oral administration of triethyl tin. The wet weight of brain stems which seems to reflect the degree of accumulation of water increased during the administration of the toxin, whereas the activity of 2, 3-cyclic nucleotide 3-phosphodiesterase altered less remarkably. When TET was withdrawn from the drinking water, the rats showed a dramatic clinical improvement along with reduction in wet weight of brain stems. Treatment with acetazolamide following TET inhibited the clinical improvement and reduction in wet weight of brain stems. The present results indicates that central myelin has plasticity in recovering from the vacuolar degeneration by removing the accumulated fluid and carbonic anhydrase is possibly involved in the dehydration, of myelin in such a recovery phase.  相似文献   
9.
Summary A Drosophila visual mutant rdgA has photoreceptive cells which degenerate gradually after eclosion. Fine structure of the retinular cells of rdgA KS60 and rdgA K014 was studied during early stages of degeneration to determine the initial morphological defects. The retinular cells of these two alleles showed the following structural abnormality within 1 day after eclosion: (1) rhabdomeres were small and irregular in shape; (2) cisternae of the rough endoplasmic reticulum were more numerous than those in normal retinular cells; (3) submicrovillar cisternae were absent; and (4) lysosomes were fewer than normal. Three-dimensional reconstruction of serial sections of the ommatidia showed that the degeneration of mutant rhabdomeres proceeds more rapidly in regions remote from the nuclei. These results suggest that the process of turnover of rhabdomeric microvilli is abnormal in rdgA. We also confirmed an increase of lysosomes and destruction of cellular organelles, as reported by previous investigators at more advanced stages of degeneration.  相似文献   
10.
The effects of phorbol esters [phorbol 12,13-dibutyrate (PDB), 12-O-tetradecanoylphorbol 13-acetate (TPA), and phorbol 13-acetate] were investigated on the release of [3H]norepinephrine, 45Ca2+ accumulation, and protein kinase C activity in cultured sympathetic neurons of the chick embryo. Sympathetic neurons derived from 10-day-old chick embryo were cultured in serum-free medium supplemented with insulin, transferrin, and nerve growth factor. After 3 days, neurons were loaded with [3H]-norepinephrine and the release of [3H]norepinephrine was determined before and after electrical stimulation. Stimulation at 1 Hz for 15 s increased the release of [3H]-norepinephrine over the nonstimulation period. Stimulation-evoked release gradually declined with time during subsequent stimulation periods. Incubation of neurons in Ca2+-free Krebs solution containing 1 mM EGTA completely blocked stimulation-evoked release of [3H]-norepinephrine. Stimulation-evoked release of [3H]-norepinephrine was markedly facilitated by 3 and 10 nM PDB or TPA. The spontaneous release was also enhanced by PDB and TPA. The net accumulation of 45Ca2+ during stimulation of sympathetic neurons was increased by two- to fourfold in the presence of PDB or TPA. PDB at 1-100 nM produced a concentration-dependent increase in the activation of protein kinase C. PDB at 30 nM increased the activity of protein kinase C of the particulate fraction from 0.09 to 0.58 pmol/min/mg protein. There was no significant change in protein kinase C activity of the cytosolic fraction (0.14 pmol/min/mg versus 0.13 pmol/min/mg protein). The ratio of the particulate to cytosolic protein kinase C increased from a control value of 0.62 to 4.39 after treatment with 30 nM PDB. TPA (10 and 30 nM) also increased protein kinase C activity of the particulate fraction by six- to eightfold. Phorbol 13-acetate had no effect on protein kinase C activity, [3H]norepinephrine release, and 45Ca2+ accumulation. These results provide direct evidence that activation of protein kinase C enhances Ca2+ accumulation, which in turn leads to the facilitation of transmitter release in sympathetic neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号