首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
  2019年   1篇
  2016年   2篇
  2014年   4篇
  2013年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  1998年   1篇
  1995年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
2.
3.
The mechanosensory lateral line is a distributed, hair-cell based system which detects the water flow regime at the surface of the fish. Superficial neuromasts densely scattered over the surface of some cave fish detect the pattern of flow over the surface of the body and are important in rheotactic behaviors and perhaps in the localization of small vibrating sources. Canal neuromasts are very likely also involved in the detection of small planktonic prey, but seem also to play an essential role in replacing vision as the major sense by which blind cave-fish perceive their surroundings. The flow-field that exists around a gliding fish is perturbed by objects in the immediate vicinity, these perturbations are detected by the lateral line system. In this way the fish can build up a picture of its environment, a process that has been called active hydrodynamic imaging. None of the lateral line behaviors exhibited by blind cave fish are necessarily exclusive to these species, but there is some evidence that their lateral line capabilities are enhanced with respect to their sighted relatives.  相似文献   
4.
A study of the ontogeny of the lateral line system in leptocephali of the Japanese eel Anguilla japonica reveals the existence of three morphologically different types of lateral line organs. Type I is a novel sensory organ with hair cells bearing a single kinocilium, lacking stereocilia, distributed mainly on the head of larvae, and morphologically different from typical superficial neuromasts of the lateral line system. Its developmental sequence suggests that it may be a presumptive canal neuromast. Type II is an ordinary superficial neuromast, common in other teleost larvae, which includes presumptive canal neuromasts that first appear on the trunk and accessory superficial neuromasts that later appear on the head and trunk. Type III is a very unusual neuromast located just behind the orbit, close to the otic vesicle, with radially oriented hair cells, suggesting that these serve as multiple axes of sensitivity for mechanical stimuli. The behavior of larval eels suggests that the radially oriented neuromasts may act as the sole mechanosensory organ until the ordinary superficial neuromasts develop. The finding that larval eels possess a well-developed mechanosensory system suggests the possibility that they are also capable of perceiving weak environmental mechanical stimuli, like other teleost larvae.  相似文献   
5.
6.
Resting Port Jackson sharks Heterodontus portusjacksoni with dorso-lateral pit organs ablated oriented with a mean angle of 263° to the current direction in a flume. This was significantly different ( P <0·01) to controls (normal and sham operated) who had a pooled mean angle of 44° to the current. Thus the dorso-lateral pit organs of H. portusjacksoni , like the free neuromasts of some teleosts, provide sensory information for rheotaxis.  相似文献   
7.
Hearing loss is a serious burden to physical and mental health worldwide. Aberrant development and damage of hearing organs are recognized as the causes of hearing loss, the molecular mechanisms underlining these pathological processes remain elusive. Investigation of new molecular mechanisms involved in proliferation, differentiation, migration and maintenance of neuromast primordium and hair cells will contribute to better understanding of hearing loss pathology. This knowledge will enable the development of protective agents and mechanism study of drug ototoxicity. In this study, we demonstrate that the zebrafish gene miles-apart, a homolog of sphingosine-1-phosphate receptor 2 (s1pr2) in mammals, has an important role in the development of otic vesicle, neuromasts and survival of hair cells. Whole-mount in situ hybridization of embryos showed that miles-apart expression occurred mainly in the encephalic region and the somites at 24 h.p.f. (hour post fertilization), in the midbrain/hindbrain boundary, the brainstem and the pre-neuromast of lateral line at 48 h.p.f. in a strict spatiotemporal regulation. Both up- and downregulation of miles-apart led to abnormal otoliths and semicircular canals, excess or few hair cells and neuromasts, and their disarranged depositions in the lateral lines. Miles-apart (Mil) dysregulation also caused abnormal expression of hearing-associated genes, including hmx2, fgf3, fgf8a, foxi1, otop1, pax2.1 and tmieb during zebrafish organogenesis. Moreover, in larvae miles-apart gene knockdown significantly upregulated proapoptotic gene zBax2 and downregulated prosurvival gene zMcl1b; in contrast, the level of zBax2 was decreased and of zMcl1b enhanced by miles-apart overexpression. Collectively, Mil activity is linked to organization and number decision of hair cells within a neuromast, also to deposition of neuromasts and formation of otic vesicle during zebrafish organogenesis. At the larva stage, Mil as an upstream regulator of bcl-2 gene family has a role in protection of hair cells against apoptosis by promoting expression of prosurvival gene zMcl1b and suppressing proapoptotic gene zBax2.  相似文献   
8.
暗纹东方鲀侧线系统早期形态和生长发育   总被引:1,自引:0,他引:1  
通过光镜和扫描电镜对暗纹东方鲀(Takifugu obscurus)的侧线系统进行形态学及组织学的研究。研究结果首次揭示了暗纹东方鲀侧线系统除了主侧线外还包括辅助侧线和辅助神经丘。主侧线分布主要包括眶上线、眶下线、耳后侧线、下颌线、前鳃盖线、上颞线、背侧线、腹侧线。辅助侧线和辅助神经丘分布主要包括口部辅助侧线、眶下辅助侧线、下颌前辅助侧线、下颌后辅助侧线、眶上后辅助侧线、上颞腹辅助神经丘、上颞背辅助神经丘、前鳃盖后辅助神经丘、背部辅助神经丘、尾部辅助神经丘。暗纹东方鲀侧线器官为接受机械刺激的神经丘,数目上千,神经丘分布在体表的凹槽里,且位于高低不同突起顶端。神经丘由套细胞、支持细胞和感觉毛细胞组成。感觉毛细胞呈圆形排列,并且每个细胞的游离面均有一根动纤毛和几十根静纤毛。据本研究对暗纹东方鲀侧线分布特征和神经丘的生长特征等的观察结果,认为尽管暗纹东方鲀侧线系统没有如其他真骨鱼类的管道系统,但是依然具有两套不同生理机能的机械感受系统,符合"七管模式"的主侧线神经丘与管道神经丘同源,而辅助侧线和辅助神经丘才是真正的表面神经丘。  相似文献   
9.
Newly hatched larvae had one pair of free neuromasts behind the eyes. As the larvae grew, free neuromasts increased in number. The apical surface of sensory epithelium widened and subsequently elongated. The number of sensory hair cells increased and the directions of maximum sensitivity became both anteroposterior and dorsoventral on the trunk. Before notochord flexion, only the anteroposterior type was observed. After notochord flexion, two types of neuromasts were observed on the trunk. On the head, the orientation of free neuromasts formed a tangential line to concentric circles around the eyes and nostrils. Free neuromasts on the head could therefore receive stimuli from various angles from predators or zooplanktons. This suggests that these free neuromasts play a role in compensating for a dead angle of vision, and an important role in detecting zooplankton under scotopic vision. Canal organs were observed on the head and operculum in 40-d-old animals.  相似文献   
10.
The pit organs of elasmobranchs (sharks, skates and rays) are free neuromasts of the mechanosensory lateral line system. Pit organs, however, appear to have some structural differences from the free neuromasts of bony fishes and amphibians. In this study, the morphology of pit organs was investigated by scanning electron microscopy in six shark and three ray species. In each species, pit organs contained typical lateral line hair cells with apical stereovilli of different lengths arranged in an “organ‐pipe” configuration. Supporting cells also bore numerous apical microvilli taller than those observed in other vertebrate lateral line organs. Pit organs were either covered by overlapping denticles, located in open grooves bordered by denticles, or in grooves without associated denticles. The possible functional implications of these morphological features, including modification of water flow and sensory filtering properties, are discussed. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号