首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   4篇
  国内免费   2篇
  126篇
  2023年   7篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   10篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   3篇
  1984年   2篇
  1981年   1篇
排序方式: 共有126条查询结果,搜索用时 0 毫秒
1.
《Cell reports》2020,30(3):630-641.e5
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   
2.
Summary Inverted pyramidal neurons are very abundant in the cerebral cortex of the adult reeler mutant mouse. Two types of inverted pyramid are found in rapid Golgi impregnations. In the first type the axon starts from the base of the cell body and bends towards the white matter. In the second type, which is more common, the axon emerges from the apical dendritic tree and descends directly towards the white matter.Despite its abnormal topography, the site of origin of the axon in pyramids of the second type displays a normal differentiation, when analysed with the electron microscopic Golgi technique, suggesting that the ectopic initial axon segment is able to fulfil its normal functions.  相似文献   
3.
A major challenge in neuroscience is linking behavior to the collective activity of neural assemblies. Understanding of input-output relationships of neurons and circuits requires methods with the spatial selectivity and temporal resolution appropriate for mechanistic analysis of neural ensembles in the behaving animal, i.e. recording of representatively large samples of isolated single neurons. Ensemble monitoring of neuronal activity has progressed remarkably in the past decade in both small and large-brained animals, including human subjects. Multiple-site recording with silicon-based devices are particularly effective because of their scalability, small volume and geometric design. Here, we describe methods for recording multiple single neurons and local field potential in behaving rodents, using commercially available micro-machined silicon probes with custom-made accessory components. There are two basic options for interfacing silicon probes to preamplifiers: printed circuit boards and flexible cables. Probe supplying companies (http://www.neuronexustech.com/; http://www.sbmicrosystems.com/; http://www.acreo.se/) usually provide the bonding service and deliver probes bonded to printed circuit boards or flexible cables. Here, we describe the implantation of a 4-shank, 32-site probe attached to flexible polyimide cable, and mounted on a movable microdrive. Each step of the probe preparation, microdrive construction and surgery is illustrated so that the end user can easily replicate the process.  相似文献   
4.
Regulation of neuropeptide expression in the brain by neurotrophins   总被引:3,自引:0,他引:3  
Neurotrophins, which are structurally related to nerve growth factor, have been shown to promote survival of various neurons. Recently, we found a novel activity of a neurotrophin in the brain: Brain-derived neurotrophic factor (BDNF) enhances expression of various neuropeptides. The neuropeptide differentiation activity was then compared among neurotrophins both in vivo and in vitro. In cultured neocortical neurons, BDNF and neurotrophin-5 (NT-5) remarkably increased levels of neuropeptide Y and somatostatin, and neurotrophin-3 (NT-3) also increased these peptides but required higher concentrations. At elevating substance P, however, NT-3 was as potent as BDNF. In contrast, NGF had negligible or no effect. Neurotrophins administered into neonatal brain exhibited slightly different potencies for increasing these neuropeptides: The most marked increase in neuropeptide Y levels was obtained in the neocortex by NT-5, whereas in the striatum and hippocampus by BDNF, although all three neurotrophins increased somatostatin similarly in all the brain regions examined. Overall spatial patterns of the neuropeptide induction were similar among the neurotrophins. Neurons in adult rat brain can also react with the neurotrophins and alter neuropeptide expression in a slightly different fashion. Excitatory neuronal activity and hormones are known to change expression of neurotrophins. Therefore, neurotrophins, neuronal activity, and hormones influence each other and all regulate neurotransmitter/peptide expression in developing and mature brain. Physiological implication of the neurotransmitter/peptide differentiation activities is also discussed.  相似文献   
5.
Hepatocyte growth factor (HGF) activation of the MET receptor tyrosine kinase influences multiple neurodevelopmental processes. Evidence from human imaging and mouse models shows that, in the forebrain, disruptions in MET signaling alter circuit formation and function. One likely means of modulation is by controlling neuron maturation. Here, we examined the signaling mechanisms through which MET exerts developmental effects in the neocortex. In situ hybridization revealed that hgf is located near MET‐expressing neurons, including deep neocortical layers and periventricular zones. Western blot analyses of neocortical crude membranes demonstrated that HGF‐induced MET autophosphorylation peaks during synaptogenesis, with a striking reduction in activation between P14 and P17 just before pruning. In vitro analysis of postnatal neocortical neurons assessed the roles of intracellular signaling following MET activation. There is rapid, HGF‐induced phosphorylation of MET, ERK1/2, and Akt that is accompanied by two major morphological changes: increases in total dendritic growth and synapse density. Selective inhibition of each signaling pathway altered only one of the two distinct events. MAPK/ERK pathway inhibition significantly reduced the HGF‐induced increase in dendritic length, but had no effect on synapse density. In contrast, inhibition of the PI3K/Akt pathway reduced HGF‐induced increases in synapse density, with no effect on dendritic length. The data reveal a key role for MET activation during the period of neocortical neuron growth and synaptogenesis, with distinct biological outcomes mediated via discrete MET‐linked intracellular signaling pathways in the same neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1160–1181, 2016  相似文献   
6.
Previous studies in the mouse have shown that neonatal lesions to the cholinergic basal forebrain (nBM) areas result in transient cholinergic depletion of neocortex and precipitate altered cortical morphogenesis. Lesion-induced morphological alterations in cortex persist into adulthood and are accompanied by behavioral changes, including spatial memory deficits. The current study investigated whether neonatal nBM lesions affect male and female mice differently in adulthood. Quantitative morphometry of cortical layer width was employed to assess alterations in cytoarchitecture in neonatally nBM-lesioned and littermate control mice of both sexes following behavioral testing. Our results showed significant decreases in cortical layer IV and V widths across somato/motor cortex in neonatally nBM lesioned mice of both sexes. Sexually dimorphic responses were observed in cortical layer II/III and total cortical width, limited to the area containing the “barrel cortex” representation of the whisker hairs. In lesioned females, layer II/III and total cortical width were decreased relative to female controls, and in lesioned males, layer II/III was increased relative to controls, whereas total cortical width was unchanged. In male but not female mice we observed significant correlations between decreased widths in layer IV and V and impaired performance on a spatial memory task. The current data further support a role of developing cholinergic cortical afferents in the modulation of cortical morphogenesis and cortical circuits involved in cognitive behaviors. In addition, our observations provide further evidence for sexually dimorphic development and function in cognitive centers of the rodent brain. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 595–606, 1998  相似文献   
7.
We measured the levels of activity of aldehyde dehydrogenase (AdhDH, EC 1.2.1.3) manifested at different concentrations of acetaldehyde (AcAdh) in cytosol fractions from the tissues of the hypothalamus, midbrain, and neocortex of rats preferring an ethanol solution or pure water as liquids for drinking (ethanol- and water-preferring, EP and WP groups, respectively). Two AdhDH isoforms, with a high and a low affinity for AcAdh, were identified in the above brain structures. An AdhDH-1 isoform characterized by a higher affinity for AcAdh and a low value of the apparent Michaelis constant (K m) was found in all studied brain structures of the EP rats. An analogous AdhDH-1 isoform found in cytosol fractions from the hypothalamus and midbrain of the WP rats showed a lower affinity for AcAdh and provided a lower maximum rate of reaction (V max). In the neocortex cytosol fractions of the rats of this group, AdhDH-1 could not be identified. In EP rats, the level of AcAdh metabolism mediated by AdhDH was noticeably higher in cytosol fractions from the hypothalamus and midbrain, as compared with that in the respective fraction from the neocortex.  相似文献   
8.
Neocortical pyramidal neurons in vivo are subject to an intense synaptic background activity that has a significant impact on various electrophysiological properties and dendritic integration. Using detailed biophysical models of a morphologically reconstructed neocortical pyramidal neuron, in which synaptic background activity was simulated according to recent measurements in cat parietal cortex in vivo, we show that the responsiveness of the cell to additional periodic subthreshold stimuli can be significantly enhanced through mechanisms similar to stochastic resonance. We compare several paradigms leading to stochastic resonance-like behavior, such as varying the strength or the correlation in the background activity. A new type of resonance-like behavior was obtained when the correlation was varied, in which case the responsiveness is sensitive to the statistics rather than the strength of the noise. We suggest that this type of resonance may be relevant to information processing in the cerebral cortex.  相似文献   
9.
A recent study reported lower anxiety in the 5xFAD transgenic mouse model of Alzheimer's disease, as measured by reduced time on the open arms of an elevated plus maze. This is important because all behaviors in experimental animals must be interpreted in light of basal anxiety and response to novel environments. We conducted a comprehensive anxiety battery in the 5xFAD transgenics and replicated the plus‐maze phenotype. However, we found that it did not reflect reduced anxiety, but rather abnormal avoidance of the closed arms on the part of transgenics and within‐session habituation to the closed arms on the part of wild‐type controls. We noticed that the 5xFAD transgenics did not engage in the whisker‐barbering behavior typical of mice of this background strain. This is suggestive of abnormal social behavior, and we suspected it might be related to their avoidance of the closed arms on the plus maze. Indeed, transgenic mice exhibited excessive home‐cage social behavior and impaired social recognition, and did not permit barbering by wild‐type mice when pair‐housed. When their whiskers were snipped the 5xFAD transgenics no longer avoided the closed arms on the plus maze. Examination of parvalbumin (PV) staining showed a 28.9% reduction in PV+ inhibitory interneurons in the barrel fields of 5xFAD mice, and loss of PV+ fibers in layers IV and V. This loss of vibrissal inhibition suggests a putatively aversive overstimulation that may be responsible for the transgenics' avoidance of the closed arms in the plus maze .  相似文献   
10.
The study of a natural endocranial cast of Paroxyaena has shown that its vision was an important system of afferentation, but did not prevail over others, unlike that of Neohyaenodon. The olfaction was much better developed than in Neohyaenodon. The large gyrus prorealis suggests the presence of a long mobile nose. The well-developed sensomotoric cortex is evidence that the forepaw of Paroxyaena showed a high mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号