首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2017年   1篇
  2012年   2篇
  2008年   2篇
排序方式: 共有6条查询结果,搜索用时 512 毫秒
1
1.
Despite several conventional potent antibacterial therapies, bacterial infections pose a significant threat to human health because they are emerging as the leading cause of death worldwide. Due to the development of antibiotic resistance in bacteria, there is a pressing demand to discover novel approaches for developing more effective therapies to treat multidrug-resistant bacterial strains and biofilm-associated infections. Therefore, attention has been especially devoted to a new and emerging branch of science “nanotechnology” to design non-conventional antimicrobial chemotherapies. A range of nanomaterials and nano-sized carriers for conventional antimicrobial agents have fully justified their potential to combat bacterial diseases by reducing cell viability, by attenuating quorum sensing, and by inhibiting/or eradicating biofilms. This communication summarizes emerging nano-antimicrobial therapies in treating bacterial infections, particularly using antibacterial, quorum quenching, and anti-biofilm nanomaterials as new approaches to tackle the current challenges in combating infectious diseases.  相似文献   
2.
纳米材料生物效应研究进展   总被引:19,自引:1,他引:18  
随着纳米技术的快速发展,纳米材料在医学成像、疾病诊断、药物传输、癌症治疗、基因治疗等领域的应用和基础研究也在飞速发展.同时,纳米材料的这些有益应用使得人体通过吸入、经口、皮肤吸收和静脉注射等不同方式受到暴露.当纳米材料与生物体系发生相互作用时,有可能产生负面生物学效应,而这些潜在的毒理效应都是未知的.综述了纳米材料在生物医学领域巨大的应用前景,关注其对心血管系统、呼吸系统及转运到其他器官可能造成的负面效应,并探讨了纳米颗粒在引起心血管疾病及肺部炎症方面的可能机理与作用途径.最后对纳米材料的安全性评估和研究重点进行了总结.  相似文献   
3.
AFMBioMed is the founding name under which international conferences and summer schools are organized around the application of atomic force microscopy in life sciences and nanomedicine. From its inception at the Atomic Energy Commission in Marcoule near 2004 to its creation in 2007 and to its 10th anniversary conference in Krakow, a brief narrative history of its birth and rise will demonstrate how and what such an organization brings to laboratories and the AFM community. With the current planning of the next AFMBioMed conference in Münster in 2019, it will be 15 years of commitment to these events.  相似文献   
4.
Nanotubes are being developed for a large variety of applications ranging from electronics to drug delivery. Common carbon nanotubes such as single-walled and multi-walled carbon nanotubes have been studied in the greatest detail but require solubilization and removal of catalytic contaminants such as metals prior to being introduced to biological systems for medical application. The present in vivo study characterizes the degree and nature of inflammation caused by a novel class of self-assembling rosette nanotubes, which are biologically inspired, naturally water-soluble and free of metal content upon synthesis. Upon pulmonary administration of this material we examined responses at 24 h and 7d post-exposure. An acute inflammatory response is triggered at 50 and 25 microg doses by 24 h post-exposure but an inflammatory response is not triggered by a 5 microg dose. Lung inflammation observed at a 50 microg dose at 24 h was resolving by 7d. This work suggests that novel nanostructures with biological design may negate toxicity concerns for biomedical applications of nanotubes. This study also demonstrates that water-soluble rosette nanotube structures represent low pulmonary toxicity, likely due to their biologically inspired design, and their self-assembled architecture.  相似文献   
5.
The effect of bulk and engineered nanoparticle (NP) Ag, Au, Cu, Si, and C at 250 and 750 mg/L on zucchini biomass, transpiration, and element content was determined. The pH of bulk and NP solutions prior to plant growth frequently differed. Nanoparticle Cu solution pH was significantly higher than bulk Cu, whereas for Ag and C, the NPs had significantly lower pH. Plants were unaffected by Au, regardless of particle size or concentration. NP Ag reduced plant biomass and transpiration by 49-91% compared to equivalent bulk Ag. NP Si at 750 mg/L reduced plant growth and transpiration by 30-51% relative to bulk Si. Bulk and NP Cu were phytotoxic but much of the effect was alleviated by humic acid. The shoot Ag and Cu content did not differ based on particle size or concentration. The accumulation of bulk Au was greater than the NP, but humic acid increased the accumulation of NP and bulk Au by 5.6-fold and 80%, respectively. The uptake of NP Si was 5.6-6.5-fold greater than observed with the bulk element. These findings show that the NPs may have unique phytotoxicity or accumulation patterns and that solution properties can significantly impact particle fate and effects.  相似文献   
6.
The interactions of nanoparticles with human cells are of large interest in the context of nanomaterial safety. Here, we use live cell imaging and image‐based fluorescence correlation methods to determine colocalization of 88 nm and 32 nm silica nanoparticles with endocytotic vesicles derived from the cytoplasmic membrane and lysosomes, as well as to quantify intracellular mobility of internalized particles, in contrast to particle number quantification by counting techniques. In our study, A549 cells are used as a model for human type II alveolar epithelial cells. We present data supporting endocytotic uptake of the particles and subsequent active transport to the perinuclear region. The presence of particles in lamellar bodies is proposed as a potential exocytosis route. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号