首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   45篇
  2024年   3篇
  2023年   2篇
  2020年   9篇
  2019年   30篇
  2018年   23篇
  2017年   5篇
  2016年   11篇
  2015年   8篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
A unique nanostructure of 3D and vertically aligned and interconnected porous carbon nanosheets (3D‐VCNs) is demonstrated by a simple carbonization of agar. The key feature of 3D‐VCNs is that they possess numerous 3D channels with macrovoids and mesopores, leading to high surface area of 1750 m2 g?1, which play an important role in loading large amount of sulfur, while vertically aligned microporous carbon nanosheets act as the multilayered physical barrier against polysulfides anions and prevent their dissolution in the electrolyte due to strong adsorption during cycling process. As a result, the 3D hybrid (3D‐S‐VCNs) infiltered with 68.3 wt% sulfur exhibits a high and stable reversible capacity of 844 mAh g?1 at the current density of 837 mA g?1 with excellent Coulombic efficiency ≈100%, capacity retention of ≈80.3% over 300 cycles, and good rate ability (the reversible capacity of 738 mAh g?1 at the high current density of 3340 mA g?1). The present work highlights the vital role of the introduction of 3D carbon nanosheets with macrovoids and mesopores in enhancing the performance of LSBs.  相似文献   
2.
Polymer dielectrics such as poly(vinylidene fluoride) (PVDF) have drawn tremendous attention in high energy density capacitors because of their high dielectric constant and ease of processing. However, the discharged energy density attained with these materials is restrained by the inferior breakdown strength and electric resistivity. Herein, PVDF composite films with a nanosized interlayer of assembled boron nitride nanosheets (BNNSs) that is aligned along the in‐plane direction are prepared through a simple layer‐by‐layer solution‐casting process. Compared to the pristine PVDF, the composite films show remarkably suppressed leakage current, resulting in a high breakdown strength and a superior energy density which are 136% and 275%, respectively, that of the pristine PVDF. The experimental results and computational simulations reveal that the compact and successive interlayer of assembled BNNSs can largely mitigate the local field distortion and block the propagation of electrical treeing, which is advantageous over the conventional dielectric polymer nanocomposites. Notably, unlike the previous dielectric polymer nanocomposites that are usually incorporated with a high volume fraction of nanofillers, i.e., 5–10 vol%, the present composites contain only an extremely low content of nanfillers, e.g., 0.16 vol%. These findings offer a novel paradigm for fabricating high energy density and high efficiency polymer dielectrics.  相似文献   
3.
4.
Sodium ion batteries are now attracting great attention, mainly because of the abundance of sodium resources and their cheap raw materials. 2D materials possess a unique structure for sodium storage. Among them, transition metal chalcogenides exhibit significant potential for rechargeable battery devices due to their tunable composition, remarkable structural stability, fast ion transport, and robust kinetics. Herein, ultrathin TiS2 nanosheets are synthesized by a shear‐mixing method and exhibit outstanding cycling performance (386 mAh g?1 after 200 cycles at 0.2 A g?1). To clarify the variations of galvanostatic curves and superior cycling performance, the mechanism and morphology changes are systematically investigated. This facile synthesis method is expected to shed light on the preparation of ultrathin 2D materials, whose unique morphologies could easily enable their application in rechargeable batteries.  相似文献   
5.
6.
7.
8.
9.
The role of vacancy defects is demonstrated to be positive in various energy‐related processes. However, introducing vacancy defects into single‐crystalline nanostructures with given facets and studying their defect effect on electrocatalytic properties remains a great challenge. Here this study deliberately introduces oxygen defects into single‐crystalline ultrathin Co3O4 nanosheets with O‐terminated {111} facets by mild solvothermal reduction using ethylene glycol under alkaline condition. As‐prepared defect‐rich Co3O4 nanosheets show a low overpotential of 220 mV with a small Tafel slope of 49.1 mV dec?1 for the oxygen evolution reaction (OER), which is among the best Co‐based OER catalysts to date and even more active than the state‐of‐the‐art IrO2 catalyst. Such vacancy defects are formed by balancing with reducing environments under solvothermal conditions, but are surprisingly stable even after 1000 cycles of scanning under OER working conditions. Density functional theory plus U calculation attributes the enhanced performance to the oxygen vacancies and consequently exposed second‐layered Co metal sites, which leads to the lowered OER activation energy of 2.26 eV and improved electrical conductivity. This mild solvothermal reduction concept opens a new door for the understanding and future designing of advanced defect‐based electrocatalysts.  相似文献   
10.
Highly conductive and ultrathin 2D nanosheets are of importance for the development of portable electronics and electric vehicles. However, scalable production and rational design for highly electronic and ionic conductive 2D nanosheets still remain a challenge. Herein, an industrially adoptable fluid dynamic exfoliation process is reported to produce large quantities of ionic liquid (IL)‐functionalized metallic phase MoS2 (m‐MoS2) and defect‐free graphene (Gr) sheets. Hybrid 2D–2D layered films are also fabricated by incorporating Gr sheets into compact m‐MoS2 films. The incorporated IL functionalities and Gr sheets prevent aggregation and restacking of the m‐MoS2 sheets, thereby creating efficient and rapid ion and electron pathways in the hybrid films. The hybrid film with a high packing density of 2.02 g cm?3 has an outstanding volumetric capacitance of 1430.5 F cm?3 at 1 A g?1 and an extremely high rate capability of 80% retention at 1000 A g?1. The flexible supercapacitor assembled using a polymer‐gel electrolyte exhibits excellent resilience to harsh electrochemical and mechanical conditions while maintaining an impressive rate performance and long cycle life. Successful achievement of an ultrahigh volumetric energy density (1.14 W h cm?3) using an organic electrolyte with a wide cell voltage of ≈3.5 V is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号