首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   8篇
  国内免费   1篇
  2023年   2篇
  2021年   4篇
  2020年   1篇
  2019年   6篇
  2018年   9篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   8篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
排序方式: 共有56条查询结果,搜索用时 250 毫秒
1.
Extracellular vesicles (EVs), which include a variety of nano‐sized membrane‐encapsulated particles, are released to the extracellular microenvironment by the vast majority of cells and carry lipids, proteins, mRNA, and miRNA or non‐coding RNA. Increasing evidence suggests the great versatility and potential of EV‐based applications in humans. In this issue, van Balkom et al. explore and compare the reported proteomic signature of mesenchymal stromal cell (MSC)‐derived small EVs. In particular, their paper offers a valuable approach and point of view on MSC‐EV manufacturing and therapeutic potential. Briefly, van Balkom et al. aimed to identify a common protein signature that may be useful in ensuring the homogeneity of therapeutic MSC‐EVs. In addition to excessive variability in EV‐producing cell sources and culture conditions, the harvesting time for the EV‐containing conditioned medium, and EV isolation procedure, the authors found a specific protein signature from the publicly available MSC‐EVs proteome. In light of their findings and those from the plentiful studies published in this continuously growing area of research, potential focus areas and issues are outlined for the more rational design and optimization of MSC‐EV production and potency for therapeutics.  相似文献   
2.
Small interfering RNA molecules (siRNA) hold great promise to specifically target cytoprotective factors to enhance cancer therapy. Like antisense RNA strategies, however, the use of siRNA is limited because of in vivo instability. As a first step to overcome delivery issues, a series of graft copolymers of polyethylene glycol and polyethylenimine (PEI-g-PEG) were synthesized and investigated as nontoxic carriers for delivery of siRNA targeting the signaling peptide of secretory clusterin (sCLU), a prosurvival factor that protects cells from ionizing radiation (IR) injury, as well as chemotherapeutic agents. Three copolymers with different PEG grafting densities were tested for their abilities to bind and form nanocomplexes with siRNA. A copolymer composed of 10 PEG grafts (2 kDa each) per PEI polymer (2k10 copolymer) gave the highest binding affinity to siRNA by ethidium bromide exclusion assays, and had the smallest nanocomplex size (115 +/- 13 nm diameter). In human breast cancer MCF-7 cells, 2k10-siRNA-sCLU nanocomplexes suppressed both basal as well as IR-induced sCLU protein expression, which led to an over 3-fold increase in IR-induced lethality over 2k10-siRNA scrambled controls. In summary, this study demonstrates the proof-of-principle in using nanoparticle-mediated delivery of specific siRNAs to enhance the lethality of IR exposure in vitro, opening the door for siRNA-mediated knockdown of specific cytoprotective factors, such as DNA repair, anti-apoptotic, free radical scavenging, and many other proteins.  相似文献   
3.
4.
Nanotechnology is the creation and use of materials and devices on the same scale as molecules and intracellular structures, typically less than 100?nm in size. It is an emerging science and has made its way into pharmaceuticals to significantly improve the delivery and efficacy of drugs in a number of therapeutic areas, due to development of various nanoparticle-based products. In recent years, there has been increasing evidence that nanotechnology can help to overcome many of the ocular diseases and hence researchers are keenly interested in this science. Nanomedicines offer promise as viable alternatives to conventional drops, gels or ointments to improve drug delivery to the eye. Because of their small size, they are well tolerated, thus preventing washout, increase bioavailability and also help in specific drug delivery. This review describes the application of nanotechnology in the control of human diseases with special emphasis on various eye and ocular surfaces diseases.  相似文献   
5.
6.
Petri dish cultured cells have for long provided scientists an aperture to understanding cell's behavior both in normal and disease states as well as in vitro and in vivo. But recent advances have brought to light how the architecture and composite nature of the immediate environment within which the cell is proliferated can profoundly influence its phenotypic features and functions, thus making obvious, limitations of the conventional two-dimensional cell culture despite it cost effectiveness. Fortunately, the transition to three-dimensional (3D) cell culture has occurred concurrently with expanded knowledge of nanoscience and materials, thereby lending significant impetus for innovative research. This review is focused on the application of nanoparticles in 3D stem cell breeding, recent trends and developments in medical sciences for improved drug delivery, and treatment approaches to some human diseases. We also reviewed prevailing challenges and concerns of nanotoxicity as it continues to impede and delay clinical applications as well the ongoing concerted and multidisciplinary efforts to overcome them.  相似文献   
7.
8.
In our previous study, we demonstrated that combined treatment with hydrogen (H2) and platinum nanocolloid (Pt-nc) exerted markedly antiproliferative effects on cancer cells compared with each treatment alone. However, because the related mechanisms remain unclear, we investigated carcinostatic mechanisms of the combined treatment with H2 + Pt-nc. Significant suppression of cell proliferation was confirmed at 52?h following combined treatment, and the similar effect was also observed by the 30- or 40-min transient treatment with H2?+?Pt-nc. The transient treatments led to changes in cell size and morphology, loss of microvilli, and apoptosis-like cell death at 120 h after treatment. Moreover, transient combined treatment with H2?+?Pt-nc induced cell-cycle arrest, as reflected by decreased proportions of G1-phase cells and accumulation of G2/M-phase cells. In contrast, intracellular peroxide levels were temporarily and significantly increased immediately after H2?+?Pt-nc treatment but not after treatment with H2 or Pt-nc alone. Additionally, combined treatment-induced carcinostatic effects were significantly diminished in the presence of catalase, and marked hydrogen peroxide (H2O2) generation was confirmed after mixing Pt-nc into cell culture media containing a high concentration of H2. These changes are in agreement with the results that carcinostatic effects were induced after only 40 min of treatment with H2?+?Pt-nc. Thus, transient and marked generation of H2O2 is responsible for the carcinostatic effects of combined treatment with H2?+?Pt-nc.  相似文献   
9.
10.
Nanobiotechnology is a new direction in the technological science, which plays a key role in creation of nanodevices for analysis of living systems on a molecular level. Nanomedicine is the application of nanotechnologies in medicine for maintenance and improvement of human life using the knowledge on human organism at the molecular level. Application of nanoparticles and nanomaterials for the diagnostic and therapeutic purposes is now significantly extended in nanomedicine. Use of nanotechnological approaches and nanomaterials opens new prospects for creation of drugs and systems for their directed delivery. Implementation of optical biosensor, atomic force, nanowire and nanoporous approaches into genomics and proteomics will significantly enhance the sensitivity and accuracy of diagnostics and will shorten the time of diagnostic procedures that will undoubtedly improve the efficiency of medical treatment. The review highlights recent data on application of nanobiotechnologies in the field of diagnostics and creation of new drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号