首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
  2020年   1篇
  2017年   2篇
  2013年   4篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
We present a new parallelised controller for steering an arbitrary geometric region of a molecular dynamics (MD) simulation towards a desired thermodynamic and hydrodynamic state. We show that the controllers may be applied anywhere in the domain to set accurately an initial MD state, or solely at boundary regions to prescribe non-periodic boundary conditions (PBCs) in MD simulations. The mean molecular structure and velocity autocorrelation function remain unchanged (when sampled a few molecular diameters away from the constrained region) when compared with those distributions measured using PBCs. To demonstrate the capability of our new controllers, we apply them as non-PBCs in parallel to a complex MD mixing nano-channel and in a hybrid MD continuum simulation with a complex coupling region. The controller methodology is easily extendable to polyatomic MD fluids.  相似文献   
2.
3.
4.
Reverse electrodialysis (RED) is known as an efficient way of converting the salinity gradient between river water and sea water into energy. However, the high cost and complex fabrication of the necessary ion exchange membranes greatly prohibit the development of the RED process. For the first time, an ionized wood membrane is demonstrated for this application, benefiting from the advantages of natural wood, which is abundant, low cost, sustainable, and easy to scale. The wood membrane maintains the aligned nanochannels of the cellulose nanofibers derived from the natural wood. The surface of the nanochannels can be functionalized to positively or negatively charged by in situ modifying the hydroxyl groups on the cellulose chains to quaternary ammonium or carboxyl groups, respectively. These charged aligned nanochannels serve as nanofluidic passages for selective ion transport with opposite polarity through the wood membrane, resulting in efficient charge separation and generating an electrochemical potential difference. The all‐wood RED device with 100 cells using a scalable stacking geometry generates an output voltage as high as 9.8 V at open circuit from a system of synthetic river water and sea water.  相似文献   
5.
Hepatitis B virus (HBV) core protein is a model system for studying assembly and disassembly of icosahedral structures. Controlling disassembly will allow re‐engineering the 120 subunit HBV capsid, making it a molecular breadboard. We examined removal of subunits from partially crosslinked capsids to form stable incomplete particles. To characterize incomplete capsids, we used two single molecule techniques, resistive‐pulse sensing and charge detection mass spectrometry. We expected to find a binomial distribution of capsid fragments. Instead, we found a preponderance of 3 MDa complexes (90 subunits) and no fragments smaller than 3 MDa. We also found 90‐mers in the disassembly of uncrosslinked HBV capsids. 90‐mers seem to be a common pause point in disassembly reactions. Partly explaining this result, graph theory simulations have showed a threshold for capsid stability between 80 and 90 subunits. To test a molecular breadboard concept, we showed that missing subunits could be refilled resulting in chimeric, 120 subunit particles. This result may be a means of assembling unique capsids with functional decorations.  相似文献   
6.
We investigated the immobilization of actin filaments and its self-assembly in vitro in a continuous-flow system on poly(styrene-maleic acid) (PSMA), poly(methyl methacrylate) (PMMA), poly(t-butyl methacrylate) [P(tBuMA)] polymeric surfaces and along the linear channels. Among these polymeric surfaces, PSMA appeared to be more suitable for supramolecular manipulations as it lacked inherent fluorescence, had good biocompatibility with actin-myosin, and provided sufficient amounts of binding sites for the covalent immobilization of actin. Covalent attachment of G-actin on PSMA polymeric surfaces resulted in stable polymerization followed by alignment of filaments over 1.5 h, along with a greater surface density of the proteins. It is shown that electrostatic condensation of intact F-actin filaments and F-actin/gelsolin filaments with Ba2+ can be successfully used for progressive bundle formation and alignment in the constant flow. Actin bundles retained their ability to support HMM-anti-HMM bead translocation. Long-range cooperative transitions in actin induced by gelsolin represent a structural perturbation of the barbed end and presumably result in regularly organized bundles that secure directional movement. This simple technique for fabrication of self-assembled and aligned F-actin/gelsolin bundles provides a convenient experimental system for nanotechnological applications.  相似文献   
7.
Nanocontraction flows of liquid short-chain polyethylene ([CH2]50) that were uniformly extruded by a constant-speed piston into a surrounding vacuum from a reservoir through an abrupt contraction nozzle were performed by employing molecular dynamics simulations. The extrudate exhibits a similar die swell phenomenon around the exit of the nozzle. In addition, numerous molecular chains are strongly adsorbed on the external surface of the nozzle. At high extrusion speeds, the velocity and temperature profiles in the nozzle show convex and concave parabolic curves, respectively, whereas the profiles are relatively flat at lower speeds. Near the internal boundary of the nozzle, the wall slip is inspected. Significantly, during the flow, the molecular chains undergo structural deformation, including compressed, stretched and shrunk motions. Comparisons with related experimental observations show that the simulated probability distributions of the bending and dihedral angles, and variations of the squared radius of gyration and orientations, are in reasonable agreement.  相似文献   
8.
《MABS-AUSTIN》2013,5(6):1025-1035
ABSTRACT

Accelerated development of monoclonal antibody (mAb) tool reagents is an essential requirement for the successful advancement of therapeutic antibodies in today’s fast-paced and competitive drug development marketplace. Here, we describe a direct, flexible, and rapid nanofluidic optoelectronic single B lymphocyte antibody screening technique (NanOBlast) applied to the generation of anti-idiotypic reagent antibodies. Selectively enriched, antigen-experienced murine antibody secreting cells (ASCs) were harvested from spleen and lymph nodes. Subsequently, secreted mAbs from individually isolated, single ASCs were screened directly using a novel, integrated, high-content culture, and assay platform capable of manipulating living cells within microfluidic chip nanopens using structured light. Single-cell polymerase chain reaction–based molecular recovery on select anti-idiotypic ASCs followed by recombinant IgG expression and enzyme-linked immunosorbent assay (ELISA) characterization resulted in the recovery and identification of a diverse and high-affinity panel of anti-idiotypic reagent mAbs. Combinatorial ELISA screening identified both capture and detection mAbs, and enabled the development of a sensitive and highly specific ligand binding assay capable of quantifying free therapeutic IgG molecules directly from human patient serum, thereby facilitating important drug development decision-making. The ASC import, screening, and export discovery workflow on the chip was completed within 5 h, while the overall discovery workflow from immunization to recombinantly expressed IgG was completed in under 60 days.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号