首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2019年   2篇
  2018年   1篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
2.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   
3.
The poxvirus, myxoma virus, encodes within its genome at least eleven different proteins that compromise, skew, or disable the innate and adaptive responses of its hosts. In the laboratory rabbit, Oryctolagus cuniculus, these effects result in myxomatosis, a fatal condition characterized by skin lesions and systemic immunosuppression. Interestingly, while myxoma infection also causes skin lesions in its natural host and in natural populations of O. cuniculus in Australia where this novel host and the virus have co-evolved, the condition of myxomatosis does not ensue and infection is not fatal. In this review I discuss the biochemical properties of the characterized immunomodulatory proteins of myxoma virus, and their pathogenic effects in laboratory rabbits. Disruption of any one myxoma immunomodulatory gene diminishes the severity of the infection without compromising infectivity. Thus, the characterized immunomodulatory genes appear not to be required for a productive infection in vivo. The differences in the severity of their effects in laboratory-bred versus wild O. cuniculus suggest that the outcome of myxoma infection is a consequence of the interplay between the viral immunomodulatory gene products and the cells and molecules of the host immune system.  相似文献   
4.
5.
The European rabbit, Oryctolagus cuniculus, is threatened within its native range, yet it is a highly successful colonizing pest species across its worldwide introduced range, causing large economic losses and widespread environmental degradation. To date, there has been no long‐term empirical evidence documenting the relative roles of climatic, epidemiological and biological factors in limiting life‐history determinants of rabbit range and abundance. Using 12 years of capture–mark–recapture data from their exotic range in Australia, we constructed candidate Cormack–Jolly–Seber models to test the influence of environmental, competition and disease conditions on rabbit survival and recruitment. Our results show that: (i) population‐level disease infection rate has the largest overall impact on rabbit survival, explaining 80% of variance in survival rates; (ii) environmental as well as epidemiological conditions constrain rabbit survival, especially for younger animals; (iii) temporal variation in rabbit kitten recruitment patterns are best described by a combination of climate, competition and disease settings (accounting for 68% of variance), while temperature alone has a strong negative influence on kitten recruitment; and (iv) recruitment responds positively to rabbit haemorrhagic disease, but negatively to myxomatosis – the former, probably being mediated through a disease driven effect on intraspecific competition for food. A strengthened understanding of climate change impacts on rabbit range and abundance can be achieved by accounting explicitly for potential synergisms between disease dynamics and climate. In this analysis, we provide the first step towards such an attempt for this important mammal species. Integrated approaches of this kind are essential for future forecasts of rabbit range and abundance, offsetting the conservation threat faced by O. cuniculus in its native range, and achieving effective management in exotic habitats.  相似文献   
6.
Cardiac myxoma (CM) is the most common benign cardiac tumor which is mostly sporadic. Increasing evidence show that protein-coding genes (PCGs) and long noncoding RNAs (lncRNAs) play important roles in the pathology processes of multiple cancers. However, the functional roles and regulatory mechanisms of RNAs interaction in CM are still unclear. In this study, we investigated three pairs of surgically excised CM by high throughput sequencing and screened a set of PCGs and lncRNAs which were differentially expressed and could serve as expression markers in CM. By constructing protein-protein interactions (PPI) and lncRNA-mRNA coexpressing network, we screened out a CM-related hub lncRNA-mRNA modules, which were enriched in different pathways such as MAPK and TGF-beta whose imbalance were validated by q-PCR. In addition, we identified a specific dysregulated competing endogenous RNA (ceRNA) network in CM by integrating lncRNA-miRNA-mRNA interactions. These results will help us to understand the interaction mechanisms of RNAs in CM and provide novel PCGs and lncRNAs as potential therapeutic targets for CM.  相似文献   
7.
We report a case of an extremely early recurrence of left atrial myxoma in a 13-year-old girl. On hospital admission, the clinical presentation was of cerebral embolism with noticeable spotty skin pigmentation and hypertelorism. The left atrial myxoma originated from the roof of the left atrium. The histology specimen showed typical finding of a myxoma. Six months later a new intracardial mass was evacuated, the postoperative result showing the same type of myxomatous tissue. Genetic investigations demonstrated Carney complex. The genetic analysis of the child's family was negative, demonstrating de novo mutation of this rare disorder.  相似文献   
8.
The capacity of inducing angiogenesis is a recognized hallmark of cancer cells. The cancer microenvironment, characterized by hypoxia and inflammatory signals, promotes proliferation, migration and activation of quiescent endothelial cells (EC) from surrounding vascular network. Current anti-angiogenic drugs present side effects, temporary efficacy, and issues of primary resistance, thereby calling for the identification of new therapeutic targets.MICALs are a unique family of redox enzymes that destabilize F-actin in cytoskeletal dynamics. MICAL2 mediates Semaphorin3A-NRP2 response to VEGFR1 in rat ECs. MICAL2 also enters the p130Cas interactome in response to VEGF in HUVEC. Previously, we showed that MICAL2 is overexpressed in metastatic cancer. A small-molecule inhibitor of MICAL2 exists (CCG-1423).Here we report that 1) MICAL2 is expressed in neo-angiogenic ECs in human solid tumors (kidney and breast carcinoma, glioblastoma and cardiac myxoma, n = 67, were analyzed with immunohistochemistry) and in animal models of ischemia/inflammation neo-angiogenesis, but not in normal capillary bed; 2) MICAL2 protein pharmacological inhibition (CCG-1423) or gene KD reduce EC viability and functional performance; 3) MICAL2 KD disables ECs response to VEGF in vitro. Whole-genome gene expression profiling reveals MICAL2 involvement in angiogenesis and vascular development pathways.Based on these results, we propose that MICAL2 expression in ECs participates to inflammation-induced neo-angiogenesis and that MICAL2 inhibition should be tested in cancer- and noncancer-associated neo-angiogenesis, where chronic inflammation represents a relevant pathophysiological mechanism.  相似文献   
9.
Cellular myxoma and grade I myxofibrosarcoma are mesenchymal tumours that are characterized by their abundant myxoid extracellular matrix (ECM). Despite their histological overlap, they differ clinically. Diagnosis is therefore difficult though important. We investigated their (cyto) genetics and ECM. GNAS1 -activating mutations have been described in intramuscular myxoma, and lead to downstream activation of cFos. KRAS and TP53 mutations are commonly involved in sarcomagenesis whereby KRAS subsequently activates c-Fos. A well-documented series of intramuscular myxoma (three typical cases and seven cases of the more challenging cellular variant) and grade I myxofibrosarcoma ( n = 10) cases were karyotyped, analyzed for GNAS1 , KRAS and TP53 mutations and downstream activation of c-Fos mRNA and protein expression. ECM was studied by liquid chromatography mass spectrometry and expression of proteins identified was validated by immunohistochemistry and qPCR. Grade I myxofibrosarcoma showed variable, non-specific cyto-genetic aberrations in 83,5% of cases ( n = 6) whereas karyotypes of intramuscular myxoma were all normal ( n = 7). GNAS1 -activating mutations were exclusively found in 50% of intramuscular myxoma. Both tumour types showed over-expression of c-Fos mRNA and protein. No mutations in KRAS codon 12/13 or in TP53 were detected. Liquid chromatography mass spectrometry revealed structural proteins (collagen types I, VI, XII, XIV and decorin) in grade I myxofibrosarcoma lacking in intramuscular myxoma. This was confirmed by immunohistochemistry and qPCR. Intramuscular/cellular myxoma and grade I myxofibrosarcoma show different molecular genetic aberrations and different composition of their ECM that probably contribute to their diverse clinical behaviour. GNAS1 mutation analysis can be helpful to distinguish intramuscular myxoma from grade I myxofibrosarcoma in selected cases.  相似文献   
10.
Phosphorylation of the translation initiation factor eIF2 on Ser51 of its alpha subunit is a key event for regulation of protein synthesis in all eukaryotes. M156R, the product of the myxoma virus M156R open reading frame, has sequence similarity to eIF2alpha as well as to a family of viral proteins that bind to the interferon-induced protein kinase PKR and inhibit phosphorylation of eIF2alpha. In this study, we demonstrate that, like eIF2alpha. M156R is an efficient substrate for phosphorylation by PKR and can compete with eIF2alpha. To gain insights into the substrate specificity of the eIF2alpha kinases, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel beta-barrel with two of the strands connected by a loop and an alpha-helix. The similarity between M156R and the beta-barrel structure in the N terminus of eIF2alpha suggests that the viral homologs mimic eIF2alpha structure in order to compete for binding to PKR. A homology-modeled structure of the well-studied vaccinia virus K3L was generated on the basis of alignment with M156R. Comparison of the structures of the K3L model, M156R, and human eIF2alpha indicated that residues important for binding to PKR are located at conserved positions on the surface of the beta-barrel and in the mobile loop, identifying the putative PKR recognition motif.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号