首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   5篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
2.
Abstract Little attention is paid to the behavioural and physiological adaptations of ant‐eating predators. It is expected that there should be a strong selection for traits related to prey handling, leading to the evolution of morphological, behavioural and nutritional adaptations. Such adaptations may then entail trade‐offs in handling and utilization of alternative prey. To investigate behavioural as well as nutritional adaptations and the occurrence of the corresponding trade‐offs in two ant‐eating spiders of the genus Zodarion [Zodarion atlanticum Pekár & Cardoso and Zodarion germanicum (C. L. Koch)], spiders are reared on two diets: ants (i.e. their preferred prey) and fruit flies (i.e. an alternative prey that is nutritionally optimal for euryphagous spiders). Food consumption is observed and several fitness‐related life‐history parameters are measured. Although spiders readily accept ants, more than one‐third of 35 spiders refuse to consume fruit flies and starve. Furthermore, severe hunger does not induce these individuals to accept fruit flies. Starving spiders die before moulting to the second stadium. Spiders that eat fruit flies increase only little and slowly in weight, and all of these die during the first two stadia. By contrast, spiders on an ant diet increase dramatically in weight, and develop up to the fourth stadium. These data indicate that fruit flies are not suitable for Zodarion, supporting the hypothesis that there are behavioural and nutritional trade‐offs. Taking into account the results of previous studies, it is suggested that nutritional trade‐offs are generally important for stenophagous spiders.  相似文献   
3.
Predators appear to be less frequently specialised (i.e. adapted to restricted diet) on their prey than herbivores, parasites or parasitoids. Here, we critically evaluate contemporary evolutionary hypotheses that might be used to explain the evolution of specialised foraging in predators. We propose a unifying concept within which we define four types of trophic categories using ecological (diet breadth) and evolutionary (degree of adaptations) contexts. We use data on spiders (Araneae), the most diversified order of terrestrial predators, to assess applicability of frameworks and evolutionary concepts related to trophic specialisation. The majority of spider species are euryphagous but a few have a restricted prey range, i.e. they are stenophagous. We provide a detailed overview of specialisation on different prey types, namely spiders, crustaceans, moths, dipterans, ants, and termites. We also review the available evidence for trophic adaptations, classified into four categories: behavioural, morphological, venomic and metabolic. Finally, we discuss the ecological and evolutionary implications of trophic specialisation and propose avenues for future research.  相似文献   
4.
The effect of an Argentine ant invasion on the abundance of the myrmecophagic jumping spider Siler cupreus Simon was investigated in the Hiroshima Prefecture, southwestern Japan. The frequency and density of S. cupreus were significantly higher in sites infested with Argentine ants than in ant-free sites. S. cupreus actually preyed on the adult ants and the brood. The dominance of Argentine ants possibly provides an abundant food source for S. cupreus, thus causing an increase in the number of spiders. Received 16 May 2007; revised 27 December 2007; accepted 15 January 2008.  相似文献   
5.
The arms race between specialist predators and their prey has resulted in the evolution of a variety of specific adaptations. In venomous predators, this can include venom composition, particularly if predators are specialized on dangerous prey. Here, we performed an integrative study using six species of highly specialized ant‐eating spiders of the genus Zodarion to investigate their phylogeny, realized trophic niche, efficacy in the capture of various ant species and venom composition. Data on natural diet obtained by next‐generation sequencing and field observations showed that the six Zodarion species exploit different ant species. Their phylogeny, based on mitochondrial and nuclear genes, correlated with the composition of their natural prey, indicating that closely related Zodarion species specialize on similar ant species. Prey‐capture parameters differed among Zodarion species suggesting prey‐specific efficacy. Similarly, the venom profiles of both low and high molecular compounds differed among species. Only the profiles of low molecular compounds were correlated with capture efficacy parameters, suggesting that the venom of Zodarion spiders contains prey‐specific components. Our study suggests that Iberian Zodarion spiders are specialized on particular ant species.  相似文献   
6.
The musculoskeletal feeding apparatus of anteaters in the family Myrmecophagidae (Eutheria: Xenarthra) is described, compared among the three extant genera (Tamandua, Myrmecophaga, Cyclopes), and interpreted in a phylogenetic framework. Character polarities are assessed with reference to other xenarthrans, eutherians, and didelphid marsupials. Xenarthrans are widely regarded as basal eutherians, and this is reflected in the apparent retention of plesiomorphic character states in jaw and pharyngeal musculature. Jaw closing muscles are architecturally simple, the stylohyoideus is absent, the stylopharyngeus is robust and architecturally complex, and the superior pharyngeal constrictor is weak. At the same time, the highly specialized trophic ecology of myrmecophagids is reflected in derived features of the jaw, tongue, and palatal musculature. The sternomandibularis is present, the tongue is largely composed of a sternog-lossus with no attachments to the hyoid apparatus, other glossus muscles are modified and do not enter the tongue, and the mylohyoideus and stylopharyngeus contribute to the soft palate, while other palatal muscles vary among the myrmecophagid genera. Feeding apparatus mycology provides further support for myrmecophagid monophyly. Documentation of the morphological transformations that lead to the myrmecophagid condition is hampered by incomplete data on feeding apparatus structure in nonmyrmecophagid xenarthrans (sloths and armadillos) but a tentative character mapping onto an independently derived phylogeny is offered.  相似文献   
7.
8.
9.
The rove beetle genus Drusilla includes some myrmecophilous species. The Japanese species Drusilla sparsa (Sharp, 1874) has been regarded as a non‐myrmecophilous beetle. In Kagawa Prefecture, Shikoku Island, western Japan, however, we often observed that D. sparsa adults were walking in the vicinity of foraging workers of the myrmicine ant Crematogaster osakensis Forel, 1990. The body color of the beetle is similar to C. osakensis as in other myrmecophilous beetles found near the trails of the host ants. To examine whether D. sparsa is myrmecophilous, we investigated the distribution of D. sparsa and C. osakensis in the field, as well as their behavior including prey preference of the beetle in the laboratory. Drusilla sparsa beetles were collected only in sites where C. osakensis ants occurred. When the beetles encountered the ant workers, they bent the abdominal tip toward the ants. The ants licked the abdominal tip, and then the beetles usually walked away. Such behavioral reaction of the ants was not observed when the beetles encountered workers of the formicine ant Nylanderia flavipes (Smith, 1874) that continuously attacked the beetles. Drusilla sparsa preferred to feed on dead workers of C. osakensis even when other ants were available as food, indicating that D. sparsa is a myrmecophilous species associated with C. osakensis. Crematogaster osakensis was frequently found in the stomach in the ant predator, the Japanese treefrog Hyla japonica Günther, 1859. Thus, the significance of body color similarity between the host ants and beetles is not a case of Batesian mimicry.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号