首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
All living species require protection against the damaging effects of the reactive oxygen species that are a natural by-product of aerobic life. In most organisms, glutathione is a critical component of these defences, maintaining a reducing environment inside cells. Some bacteria, however, including pathogenic mycobacteria, use an alternative low molecular mass thiol compound called mycothiol (MSH) for this purpose. Enzymes that synthesize MSH are attractive candidates for the design of novel anti-TB drugs because of the importance of MSH for mycobacterial life and the absence of such enzymes in humans. We have determined the three-dimensional structure of MshB (Rv1170), a metal-dependent deacetylase from Mycobacterium tuberculosis that catalyses the second step in MSH biosynthesis. The structure, determined at 1.9A resolution by X-ray crystallography (R=19.0%, R(free)=21.4%), reveals an alpha/beta fold in which helices pack against a seven-stranded mostly parallel beta-sheet. Large loops emanating from the C termini of the beta-strands enclose a deep cavity, which is the location of the putative active site. At the bottom of this cavity is a metal-binding site associated with a sequence motif AHPDDE that is invariant in all homologues. An adventitiously bound beta-octylglucoside molecule, used in crystallization, enables us to model the binding of the true substrate and propose a metal-dependent mechanistic model for deacetylation. Sequence comparisons indicate that MshB is representative of a wider family of enzymes that act on substituted N-acetylglucosamine residues, including a deacetylase involved in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors in eukaryotes.  相似文献   
2.
3.
Ergothioneine (EGT) is a histidine betaine derivative that exhibits antioxidant action in humans. EGT is primarily synthesized by fungal species and a number of bacterial species. A five-gene cluster (egtA, egtB, egtC, egtD & egtE) responsible for EGT production in Mycobacteria smegmatis has recently been identified. The first fungal biosynthetic EGT gene (NcEgt-1) has also been identified in Neurospora crassa. NcEgt-1 contains domains similar to those found in M. smegmatis egtB and egtD. EGT is biomembrane impermeable. Here we inferred the evolutionary history of the EGT cluster in prokaryotes as well as examining the phyletic distribution of Egt-1 in the fungal kingdom. A genomic survey of 2509 prokaryotes showed that the five-gene EGT cluster is only found in the Actinobacteria. Our survey identified more than 400 diverse prokaryotes that contain genetically linked orthologs of egtB and egtD. Phylogenetic analyses of Egt proteins show a complex evolutionary history and multiple incidences of horizontal gene transfer. Our analysis also identified two independent incidences of a fusion event of egtB and egtD in bacterial species. A genomic survey of over 100 fungal genomes shows that Egt-1 is found in all fungal phyla, except species that belong to the Saccharomycotina subphylum. This analysis provides a comprehensive analysis of the distribution of the key genes involved in the synthesis of EGT in prokaryotes and fungi. Our phylogenetic inferences illuminate the complex evolutionary history of the genes involved in EGT synthesis in prokaryotes. The potential to synthesize EGT is a fungal trait except for species belonging to the Saccharomycotina subphylum.  相似文献   
4.
5.
The pseudodisaccharide mycothiol is present in millimolar levels as the dominant thiol in most species of Actinomycetales. The primary role of mycothiol is to maintain the intracellular redox homeostasis. As such, it acts as an electron acceptor/donor and serves as a cofactor in detoxification reactions for alkylating agents, free radicals and xenobiotics. In addition, like glutathione, mycothiol may be involved in catabolic processes with an essential role for growth on recalcitrant chemicals such as aromatic compounds. Following a little over a decade of research since the discovery of mycothiol in 1994, we summarize the current knowledge about the role of mycothiol as an enzyme cofactor and consider possible mycothiol-dependent enzymes.  相似文献   
6.
Ung KS  Av-Gay Y 《FEBS letters》2006,580(11):2712-2716
The effect of exogenous oxidative stress on mycothiol (MSH) levels and redox balance was investigated in mycobacteria. Both the thiol-specific oxidant diamide and hydrogen peroxide induced up to 75% depletion of MSH to form the disulfide form, mycothione (MSSM), in Mycobacterium bovis BCG. In comparison, Mycobacterium smegmatis, a saprophytic mycobacterium, displays a greater tolerance towards these oxidants, reflected by the lack of fluxes in MSH levels and redox ratios upon oxidative stress treatments. The basal ratio of MSH to MSSM was established to be 50:1 in M. bovis BCG and 200:1 in M. smegmatis.  相似文献   
7.
Rodgoun Attarian 《FEBS letters》2009,583(19):3215-7503
Mycobacterium tuberculosis resides within alveolar macrophages. These phagocytes produce reactive nitrogen and oxygen intermediates to combat the invading pathogens. The macrophage glutathione (GSH) pool reduces nitric oxide (NO) to S-nitrosoglutathione (GSNO). Both glutathione disulfide (GSSG) and GSNO possess mycobactericidal activities in vitro. In this study we demonstrate that M. tuberculosis thioredoxin system, comprises of thioredoxin reductase B2 and thioredoxin C reduces the oxidized form of the intracellular mycothiol (MSSM) and is able to efficiently reduce GSSG and GSNO in vitro. Our study suggests that the thioredoxin system provide a general reduction mechanism to cope with oxidative stress associated with the microbe’s metabolism as well as to detoxify xenobiotics produced by the host.  相似文献   
8.
The TT1542 protein from Thermus thermophilus HB8 is annotated as a conserved hypothetical protein, and belongs to the DUF158 family in the Pfam database. A BLAST search revealed that homologs of TT1542 are present in a wide range of organisms. The TT1542 homologs in eukaryotes, PIG-L in mammals, and GPI12 in yeast and protozoa, have N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) de-N-acetylase activity. Although most of the homologs in prokaryotes are hypothetical and have no known function, Rv1082 and Rv1170 from Mycobacterium tuberculosis are enzymes involved in the mycothiol detoxification pathway. Here we report the crystal structure of the TT1542 protein at 2.0 A resolution, which represents the first structure for this superfamily of proteins. The structure of the TT1542 monomer consists of a twisted beta-sheet composed of six parallel beta-strands and one antiparallel beta-strand (with the strand order 3-2-1-4-5-7-6) sandwiched between six alpha-helices. The N-terminal five beta-strands and four alpha-helices form an incomplete Rossmann fold-like structure. The structure shares some similarity to the sugar-processing enzymes with Rossmann fold-like domains, especially those of the GPGTF (glycogen phosphorylase/glycosyl transferase) superfamily, and also to the NAD(P)-binding Rossmann fold domains. TT1542 is a homohexamer in the crystal and in solution, the six monomers forming a cylindrical structure. Putative active sites are suggested by the structure and conserved amino acid residues.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号