首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   5篇
  国内免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2015年   6篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
玉吊钟气生不定根根尖区域的部分表皮细胞经分裂可形成多细胞根毛。根毛长0.03mm左右,具单列细胞、双列细胞和叉状分枝类型,由基细胞和毛体细胞二部分组成。电镜显示,基细胞内部结构与表皮细胞相似。组成毛体的细胞都有分泌功能。在分泌活动期,细胞内形成大量内质网,并膨大成囊泡状或溢出囊泡,分泌停止,内质网即消失;其细胞结构的变化及主要由内质网参与分泌活动与蜜腺细胞在分泌活动中的结构变化类似。故推测多细胞根  相似文献   
2.
The longstanding debate about the importance of group (multilevel) selection suffers from a lack of formal models that describe explicit selection events at multiple levels. Here, we describe a general class of models for two‐level evolutionary processes which include birth and death events at both levels. The models incorporate the state‐dependent rates at which these events occur. The models come in two closely related forms: (1) a continuous‐time Markov chain, and (2) a partial differential equation (PDE) derived from (1) by taking a limit. We argue that the mathematical structure of this PDE is the same for all models of two‐level population processes, regardless of the kinds of events featured in the model. The mathematical structure of the PDE allows for a simple and unambiguous way to distinguish between individual‐ and group‐level events in any two‐level population model. This distinction, in turn, suggests a new and intuitively appealing way to define group selection in terms of the effects of group‐level events. We illustrate our theory of group selection by applying it to models of the evolution of cooperation and the evolution of simple multicellular organisms, and then demonstrate that this kind of group selection is not mathematically equivalent to individual‐level (kin) selection.  相似文献   
3.
4.
Caspases in yeast apoptosis-like death: facts and artefacts   总被引:3,自引:0,他引:3  
Various findings suggest that programmed cell death (PCD) is induced in yeast as a response to the impact of a deleterious environment and/or an intracellular defect. Moreover, the specifically localized PCD within multicellular colonies seems to be important for the safe degradation of cell subpopulations to simple compounds that can be used as nutrients by healthy survivors occurring in propitious colony areas, being thus important for proper development and survival of the yeast population. In spite of this, the question remains whether yeast dies by real apoptosis, i.e. death involving caspases, or by other kinds of PCD. A large group of mammalian caspases includes those that are responsible for monitoring of the stimulus and initiating the dying process, as well as those involved in the execution of death. Additionally, paracaspases and metacaspases, that share some homology with real caspases, but possibly differ in substrate specificity, have been identified in plants, fungi, Dictyostelium and metazoa. In yeast, one homologue of caspases, metacaspase Mca1p/Yca1p, has been identified so far, although there are several indications of the presence of other caspase-like activities in yeast. In this minireview, we summarize various data on the possible involvement of Mca1p and other caspase-like activities in yeast PCD.  相似文献   
5.
Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.  相似文献   
6.
To help to understand the modelling process that occurs when a scaffold is implanted it is vital to understand the rather complex bone remodelling process prevalent in native bone. We have formulated a mathematical model that predicts osteoactivity both in scaffolds, as well as in bone in vivo and could set a basis for the more detailed allosteric models. The model is extended towards a bio-cybernetic vision of basic multicellular unit (BMU) action, when some of the regulation loops have been modified to reflect the allosteric control mechanisms, developed by Michaels-Menten, Hill, Koshland-Nemethy-Filmer, Monod-Wyman-Changeux. By implementation of this approach a four-dimensional system was obtained that shows steady cyclic behaviour using a wide range of constants with clear biological meaning. We have observed that a local steady state appears as a limiting cycle in multi-dimensional phase space and this is discussed in this paper. Physiological interpretation of this limiting four-dimension cycle possibly related to a conservative-like value has been proposed. Analysis and simulation of the model has shown an analogy between this conservative value, as a kind of substrate-energy regenerative potential of the bone remodelling system with a molecular nature, and to the classical physical value--energy. This dynamic recovery potential is directed against both mechanical and biomechanical damage to the bone. Furthermore, the current model has credibility when compared to the normal bone remodelling process. In the framework of widely recognised Hill mechanisms of allosteric regulation the cyclic attractor, described formerly for a pure cellular model, prevails for different forms of feedback control. This result indicates the viability of the proposed existence of a conservative value (analogous to energy) that characterises the recovery potential of the bone remodelling cycle. Linear stability analysis has been performed in order to determine the robustness of the basic state, however, additional work is required to study a wider range of constants.  相似文献   
7.
Filamentous fungi are composed of hyphal compartments divided by septa, which communicate via septal pores. Apical compartments can elongate to over 100 microm without septum formation and possess a polarized distribution of organelles. In Aspergillus, subapical compartments are arrested in interphase but can reinitiate mitosis and growth by branching. Recent reports using green fluorescent protein (GFP) technology have demonstrated the highly differentiated localization of the endoplasmic reticulum (ER) network in various regions of the hyphae: the gradient distribution from the apical region, the localization along the septum, differential distributions in adjacent compartments, and the dynamic morphological change during septum formation. In this review the spatial regulation of the ER network in multicellular filamentous fungi is discussed.  相似文献   
8.
Ovarian cancer is a lethal gynecological disease that is characterized by peritoneal metastasis and increased resistance to conventional chemotherapies. This increased resistance and the ability to spread is often attributed to the formation of multicellular aggregates or spheroids in the peritoneal cavity, which seed abdominal surfaces and organs. Given that the presence of metastatic implants is a predictor of poor survival, a better understanding of how spheroids form is critical to improving patient outcome, and may result in the identification of novel therapeutic targets. Thus, we attempted to gain insight into the proteomic changes that occur during anchorage-independent cancer cell aggregation. As such, an ovarian cancer cell line, OV-90, was cultured in adherent and non-adherent conditions using stable isotope labeling with amino acids in cell culture (SILAC). Anchorage-dependent cells (OV-90AD) were grown in tissue culture flasks, whereas anchorage-independent cells (OV-90AI) were grown in suspension using the hanging-drop method. Cellular proteins from both conditions were then identified using LC-MS/MS, which resulted in the quantification of 1533 proteins. Of these, 13 and 6 proteins were up-regulated and down-regulated, respectively, in aggregate-forming cells compared with cells grown as monolayers. Relative gene expression and protein expression of candidates were examined in other cell line models of aggregate formation (TOV-112D and ES-2), which revealed an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Moreover, inhibitor and siRNA transfection studies demonstrated an apparent effect of CLCA1 on cancer cell aggregation. Further elucidation of the role of CLCA1 in the pathogenesis of ovarian cancer is warranted.  相似文献   
9.
Fifty-six nuclear protein coding genes from Taxonomically Broad EST Database and other databases were selected for phylogenomic-based examination of alternative phylogenetic hypotheses concerning intergroup relationship between multicellular animals (Metazoa) and other representatives of Opisthokonta. The results of this work support sister group relationship between Metazoa and Choanoflagellata. Both of these groups form the taxon Holozoa along with the monophyletic Ichthyosporea or Mesomycetozoea (a group that includes Amoebidium parasiticum, Sphaeroforma arctica, and Capsaspora owczarzaki). These phylogenetic hypotheses receive high statistical support both when utilizing whole alignment and when only 5000 randomly selected alignment positions are used. The presented results suggest subdivision of Fungi into Eumycota and lower fungi, Chytridiomycota. The latter form a monophyletic group that comprises Chytridiales+Spizellomycetales+Blastocladiales (Batrachochytrium, Spizellomyces, Allomyces, Blastocladiella), contrary to the earlier reports based on the analysis of 18S rRNA and a limited set of protein coding genes. The phylogenetic distribution of genes coding for a ubiquitin-fused ribosomal protein S30 implies at least three independent cases of gene fusion: in the ancestors of Holozoa, in heterotrophic Heterokonta (Oomycetes and Blastocystis) and in the ancestors of Cryptophyta and Glaucophyta. Ubiquitin-like sequences fused with ribosomal protein S30 outside of Holozoa are not FUBI orthologs. Two independent events of FUBI replacement by the ubiquitin sequence were detected in the lineage of C. owczarzaki and in the monophyletic group of nematode worms Tylenchomorpha+Cephalobidae. Bursaphelenchus xylophilus (Aphelenchoidoidea) retains a state typical of the rest of the Metazoa. The data emphasize the fact that the reliability of phylogenetic reconstructions depends on the number of analyzed genes to a lesser extent than on our ability to recognize reconstruction artifacts.  相似文献   
10.
一种简便的遗传转化技术在大麦中的应用   总被引:3,自引:0,他引:3  
本文报导一种简便实效的以大麦的愈伤组织小细胞团做为受体,进行PEG+电击法的双重强化转化新途径,并对如何提高转化效率进行了探索。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号