首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   5篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2014年   1篇
  2013年   6篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
排序方式: 共有17条查询结果,搜索用时 531 毫秒
1.
高健  赵鼎 《生物工程学报》2019,35(4):718-725
将结核分枝杆菌(Mycobacterium tuberculosis,Mtb)多个B细胞预测表位串联表达(命名为B102),并初步评价其作为诊断抗原的血清学诊断价值。将MtbPstS1、ESAT6、CFP10、Ag85B、Ag85A及PPE54等6个蛋白的11个B细胞预测表位串联,加入合适的连接臂后全基因合成;将多表位片段插入带有TRX标签的表达质粒中,在大肠杆菌BL21(DE3)中诱导表达,并利用Ni~(2+)-Chelating亲和层析和DEAE阴离子交换层析纯化目的蛋白;利用Western blotting (WB)技术对目的蛋白抗原性进行鉴定,并建立Mtb抗体检测竞争法ELISA技术,初步评价此方法对阴阳血清样本的鉴别能力。目的蛋白以包涵体形式存在,其表达量约占菌体总蛋白的31.25%,经纯化及复性后蛋白B102可溶性存在,浓度为3.124mg/mL,纯度为96.71%;WB实验表明目的蛋白能与Mtb阳性血清相应抗体发生反应。对60份Mtb阳性血清及60份Mtb阴性血清进行检测得出其灵敏度为90.00%,特异性为93.33%,阳性预测值为93.10%,阴性预测值为90.32%,符合率为91.67%,McNemer检验的结果提示与"金标准"诊断结果无差异,Kappa=0.833,提示两种方法诊断结果一致性优异。原核表达与层析纯化可以获取抗原性优异的Mtb多表位诊断抗原,作为诊断抗原可以应用于Mtb的血清学检测中。  相似文献   
2.
The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A recombinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the down-stream of the promoter (ATI-P7.5×20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous recombination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by genome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowlpox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation.Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were assayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4+ T, CD8+ T)were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cytokines (IFN-Y and IL-2) of spleen lymphocytes stimulated by H-2d-restricted CTL peptide were observed in immunized mice.We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.  相似文献   
3.
Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes and some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1 conserved CTL epitope in NS3 and 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP. The immunogenic properties of CEMP were characterized by HCV infected patients’ sera, and found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide and PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP. Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes, and would be of the value as a candidate for the development of HCV vaccines.  相似文献   
4.
【目的】研制猪口蹄疫病毒(foot-and-mouth disease virus,FMDV)A型多表位蛋白疫苗,为猪FMDV A型的防控提供安全有效的疫苗。【方法】根据前期试验结果及国内外FMDVA型流行病学信息,设计并合成了3种多表位免疫原基因A10、IA10和FA10。在大肠杆菌BL21(DE3)中诱导表达,表达蛋白纯化复性后,制苗免疫猪。分别于免疫前和免疫后14和28d采血分离血清,用液相阻断ELISA(LPB-ELISA)方法检测血清IgG抗体滴度。免疫28d后用FMDV强毒攻毒,以评估免疫保护效果。【结果】SDS-PAGE和Western blotting结果证实A10、IA10和FA10三种蛋白均获得表达,分子量分别为35、57和64 kDa,与预测蛋白大小一致,且能被FMDV感染阳性血清所识别。LPB-ELISA结果表明,A10+201免疫组IgG滴度低于灭活疫苗组,但高于其他免疫组。攻毒后A10+201免疫组和灭活疫苗免疫组全部猪(5/5)获得保护,IA10+201和FA10+201免疫组80%(4/5)猪保护,A10和FA10免疫组只有20%(1/5)猪保护,而PBS+201组所有猪均未保护。【结论】A10+201免疫保护效果较好,可作为候选疫苗进行进一步评价。  相似文献   
5.
Abstract

Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.

Communicated by Ramaswamy H. Sarma  相似文献   
6.
Abstract

Severe acute respiratory syndrome (SARS) is endemic in South China and is continuing to spread worldwide since the 2003 outbreak, affecting human population of 37 countries till present. SARS is caused by the severe acute respiratory syndrome Coronavirus (SARS-CoV). In the present study, we have designed two multi-epitope vaccines (MEVs) composed of cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell epitopes overlap, bearing the potential to elicit cellular as well as humoral immune response. We have used truncated (residues 10–153) Onchocerca volvulus activation-associated secreted protein-1 as molecular adjuvants at N-terminal of both the MEVs. Selected overlapping epitopes of both the MEVs were further validated for stable molecular interactions with their respective human leukocyte antigen class I and II allele binders. Moreover, CTL epitopes were further studied for their molecular interaction with transporter associated with antigen processing. Furthermore, after tertiary structure modelling, both the MEVs were validated for their stable molecular interaction with Toll-like receptors 2 and 4. Codon-optimized cDNA of both the MEVs was analysed for their potential high level of expression in the mammalian cell line (Human) needed for their further in vivo testing. Overall, the present study proposes in silico validated design of two MEVs against SARS composed of specific epitopes with the potential to cause a high level of SARS-CoV specific cellular as well as humoral immune response.

Communicated by Ramaswamy H. Sarma  相似文献   
7.

BACKGROUNDS:

Helicobacter pylori colonize the gastric mucosa of half of the world''s population. Although it is classified as a definitive type I carcinogen by World Health Organization, there is no effective vaccine against this bacterium. H. pylori evade the host immune response by avoiding toll-like detection, such as detection via toll-like receptor-5 (TLR-5). Thus, a chimeric construct consisting of selected epitopes from virulence factors that is incorporated into a TLR-5 ligand (Pseudomonas flagellin) could result in more potent innate and adaptive immune responses.

MATERIALS AND METHODS:

Based on the histocompatibility antigens of BALB/c mice, in silico techniques were used to select several fragments from H. pylori virulence factors with a high density of B- and T-cell epitopes.

RESULTS:

These segments consist of cytotoxin-associated geneA (residue 162-283), neutrophil activating protein (residue 30-135) and outer inflammatory protein A (residue 155-268). The secondary and tertiary structure of the chimeric constructs and other bioinformatics analyses such as stability, solubility, and antigenicity were performed. The chimeric construct containing antigenic segments of H. pylori proteins was fused with the D3 domain of Pseudomonas flagellin. This recombinant chimeric gene was optimized for expression in Escherichia coli. The in silico results showed that the conserved C- and N-terminal domains of flagellin and the antigenicity of selected fragments were retained.

DISCUSSION:

In silico analysis showed that Pseudomonas flagellin is a suitable platform for incorporation of an antigenic construct from H. pylori. This strategy may be an effective tool for the control of H. pylori and other persistent infections.  相似文献   
8.
目的 构建含有靶向乙肝表面抗原(HBsAg)基因的siRNA、乙肝复合多表位抗原基因和hIL-12共质粒表达的新型DNA疫苗,并在HepG2细胞中检测siRNA的效果以及各基因的表达。方法 设计并合成复合多表位HBV抗原基因,将其与增强型绿色荧光蛋白(EGFP)基因融合克隆进真核表达载体pVAX1的多克隆位点中,同时将带CMV启动子的完整hIL-12表达单元克隆进载体的BspH I位点之间,再设计并合成乙肝siRNA表达单元,将其克隆进载体的Mlu I位点之间,得到真核三元共表达重组质粒pVAX1-siHB-HB-EGFP-hIL12。以该重组质粒瞬时转染人肝癌细胞系HepG2,通过EGFP的荧光标记观察多表位抗原的表达,以ELISA测定培养细胞上清中hIL-12的表达,以rtPCR检测siRNA对HBsAg基因的沉默效果。结果 经酶切鉴定和测序证实共表达siRNA、hIL-12的HBV 多表位DNA疫苗构建成功。转染细胞中检测到绿色荧光,证实抗原表达;转染后48 h hIL-12的检出量为1 289 pg/mL细胞上清,72 h检出量为1 712 pg/mL细胞上清;转染后HBsAg表达量明显降低,证实siRNA效果良好。结论 成功构建乙肝复合多表位抗原基因与siRNA、hIL-12共质粒表达的DNA疫苗,并能在真核细胞中有效表达抗原与hIL-12基因,而且siRNA对HBsAg显示出明显的沉默效果。我们的工作为进一步研究该复合型DNA疫苗抗HBV的治疗效果打下基础。  相似文献   
9.
The epidemic of HIV/AIDS is sweeping across the world. It is of great importance to figure out new ways to curb this disease. Epitope-based vaccine is one of these solutions. In this study, a chimeric gene was obtained by combination of a designed HIV-1 multi-epitope gene (MEG) and HIV-1 p24 gene. A re- combinant plasmid pUTA2-MEGp24 was then constructed by inserting MEGp24 gene into the down- stream of the promoter (ATI-P7.5×20) of fowlpox virus (FPV) transfer vector pUTA2. The recombinant plasmid and wild-type FPV 282E4 strain were then co-transfected into CEF cells and homologous re- combination occurred. A recombinant virus expressing HIV-1 protein MEGp24 was screened by ge- nome PCR and Western blot assay. Large scale preparation and purification of the recombinant fowl- pox virus (rFPV) were then carried out. BALB/c mice were immunized intramuscularly with the rFPV for three times on day 0, 14 and 42. Mice were executed and sampled one week after the third inoculation. Anti-HIV-1 antibody in serum and Th1 cytokines in the supernatant of cultured spleen cells were as- sayed by ELISA. The count of T lymphocyte subsets and the CTL activity of spleen lymphocytes were analyzed by flow cytometry and lactate dehydrogenase (LDH) release assay, respectively. The results showed that HIV-1 specific antibody in serum and increased T lymphocyte subsets (CD4 T, CD8 T) were detected in the immunization group. CTL target-killing activity and higher secretion of Th1 cyto- kines (IFN-γ and IL-2) of spleen lymphocytes stimulated by H-2d-restricted CTL peptide were observed in immunized mice. We concluded that the rFPV may induce HIV-1 specific immunity especially cellular immunity in mice.  相似文献   
10.
孙鹏  孙兴宝  胡鹏  田晓红  邓波  夏良雨  王宁燕  王红  李泓彦  何志强 《遗传》2007,29(11):1351-1356
勘误:重组人巨细胞病毒(HCMV)优势表位嵌合抗原的构建表达以及捕获法检测 IgM 抗体  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号