首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   3篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
1.
In the primordial thoracic ganglia of locust embryos, the bromodeoxiuridine (BrdU) technique for labelling proliferating cells and their progeny was combined with intracellular dye injection to investigate the origin and the clonal relationship of common inhibitory motoneurons. Common inhibitors 1 (CI1) and 3 (CI3) were found to be siblings, that is, they are produced by the division of one ganglion mother cell. This ganglion mother cell results from the first division of neuroblast 5–5, at about 30% of embryonic development. A large portion, at least, of the ganglion mother cells produced by subsequent divisions of neuroblast 5–5 give rise to interneurons with contralaterally ascending or descending axons and GABA-like immunoreactivity. Thus, CI1 and CI3 are more closely related to putative inhibitory interneurons than they are to other, that is, excitatory, motoneurons. Consistent with this, the CI somata are associated with cell bodies of putative inhibitory interneurons rather than with clusters of excitatory motoneuron somata. These results elicit speculations regarding the evolutionary origin of inhibitory motoneurons. 1994 John Wiley & Sons, Inc.  相似文献   
2.
新生大鼠脊髓切片运动神经元的电生理参数测定   总被引:1,自引:0,他引:1  
用微电极技术对新生大鼠脊髓横切薄片运动神经元(MN)进行细胞内记录,测得静息电位为-62±4mV(n=26),膜电阻为67±31MΩ,时间常数3.8±1.6ms,动作电位幅度68±7mV(n=26),阈电位-50±8mV,超射值6±4mV。灌流谷氨酸(1~30mmol/L)诱导伴膜电阻降低的缓慢去极化反应,5-羟色胺(50μmol/L)介导伴膜电导降低的电压依赖性内向电流。结果表明新生大鼠脊髓切片MN的细胞内生物电记录是一种稳定可靠的电生理学和药理学研究方法。  相似文献   
3.
Healthy subjects were asked to make a voluntary ramp and hold contraction. The duration of the ramp stage was 500 ms, and the torque increment in this period was set to 15 Nm. The contraction was made from a relaxed and from a 5 Nm background torque situation. Hoffmann (H-) reflexes were elicited during the voluntary contraction, mostly with 100 ms intervals. These experiments showed an increase (facilitation) in the H-reflex before the torque or the EMG started to increase. This facilitation of the H-reflex remained during all the stages of the voluntary movement and declined to normal levels again only at the very end of the hold phase, which lasted for one second. This specific pattern of facilitation during a voluntary contraction was modeled using a modeling language, that is specifically designed to calculate neuronal systems with a high degree of reality (Ekeberg et al., 1991). Our model consisted of a motoneuron pool with 200 neurons connected to an EMG-model of the human soleus muscle and an extra group of higher-level neurons for controlling the amount of decrease of presynaptic inhibition. The model was used to simulate the observed modulation of the H-reflex with both a presynaptic and a postsynaptic mechanism. Simulations showed that a continuous change in the descending control signals is needed to make the model based on postsynaptic mechanism fit with the experimental data, whereas no extra control from the CNS over the excitatory drive to the motoneuron pool is needed when the decrease of presynaptic inhibition mechanism is applied.  相似文献   
4.
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2(+)-permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca(2+)-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca(2+)-permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons.  相似文献   
5.
Vertebrate embryos are able to reconstitute the body plan when early blastomeres are deleted, but it is not known whether this is accomplished by cells local to the lesion or by a readjustment of the entire pattern of the embryo. We distinguished between these two possibilities by studying which embryonic cells change primary spinal neuronal fates after deletion of a major spinal cord progenitor. After ablation of the V1.2 blastomere of the 16-cell Xenopus embryo, the spinal cord contained normal numbers of Rohon-Beard neurons and primary motoneurons, indicating that the remaining blastomeres numerically reconstituted these populations. Using lineage-tracing techniques we revealed a global response: 10 out of the 15 remaining blastomeres significantly changed the number of one or both neuronal types they produced. This widespread response indicates that position in the early embryo plays an important role in regulating the production of primary spinal neurons. However, not all cells are influenced solely by position; a vegetal cell transplanted into the position of the deleted V1.2 did not take on the neuronal fate of its new position. Thus, restitution of pattern relies on a combination of positional cues and intrinsic fate restrictions.  相似文献   
6.
Yang P  Ying DJ  Song L  Sun JS 《生理学报》2003,55(4):428-434
采用大鼠坐骨神经切断损伤模型,行神经外膜端端对线缝合,术中依不同组别,动物于神经缝合处远端0.5cm处分别注射人的正义和反义bcl-2重组腺病毒(Ad/s-bcl-2、Ad/as-bcl-2),报道基因重组腺病毒(Ad/lacZ)和生理盐水。术后48h,7d,15d和30d常规灌注固定大鼠,取L4-L6脊髓节段,应用X-gal染色、bel-2原位杂交和免疫组化染色、TUNEL染色以及乙酰胆碱酯酶(AChE)组织化学染色方法,观察到外源基因能在脊髓中表达,同时外源性Ad/s-bcl-2能显著减少L4到L6节段脊髓前角运动神经元凋亡的数目,减少脊髓前角运动神经元中因坐骨神经切断导致的AChE活性的降低幅度,并加快其恢复。而Ad/as-bcl-2可显著增加坐骨神经切断诱导的脊髓前角运动神经元凋亡数目以及AChE活性降低幅度,并延缓其恢复。这些观察结果表明,外源性bcl-2能保护周围神经切断后引起的脊髓运动神经元损伤。  相似文献   
7.
In the Wobbler mouse, a mutation of the Vps54 protein increases oxidative stress in spinal motoneurons, associated to toxic levels of nitric oxide and hyperactivity of nitric oxide synthase (NOS). Progesterone neuroprotection has been reported for several CNS diseases, including the Wobbler mouse neurodegeneration. In the present study, we analyzed progesterone effects on mitochondrial-associated parameters of symptomatic Wobbler mice. The activities of mitochondrial respiratory chain complexes I, II-III and IV and protein levels of mitochondrial and cytosolic NOS were determined in cervical and lumbar cords from control, Wobbler and Wobbler mice receiving a progesterone implant for 18 days. We found a significant reduction of complex I and II-III activities in mitochondria and increased protein levels of mitochondrial, but not cytosolic nNOS, in the cervical cord of Wobbler mice. Progesterone treatment prevented the reduction of complex I in the cervical region and the increased level of mitochondrial nNOS. Wobbler motoneurons also showed accumulation of amyloid precursor protein immunoreactivity and decreased activity and immunostaining of MnSOD. Progesterone treatment avoided these abnormalities. Therefore, administration of progesterone to clinically afflicted Wobblers (i) prevented the abnormal increase of mitochondrial nNOS and normalized respiratory complex I; (ii) decreased amyloid precursor protein accumulation, a sign of axonal degeneration, and (iii) increased superoxide dismutation. Thus, progesterone neuroprotection decreases mitochondriopathy of Wobbler mouse cervical spinal cord.  相似文献   
8.
Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker1,2. Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain3,4 and ventral nerve cord of embryonic5,6, larval7,8,9,10, and adult Drosophila11,12,13,14. A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN515), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.  相似文献   
9.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to be neurotrophic or neuroprotective in various neurons in culture. It is expressed in spinal motoneurons in vivo and its expression is increased markedly after axotomy, suggesting a neuroprotective role via an autocrine mechanism. However, neurotrophic activity of PACAP has not been reported for motoneurons. In the present study, we investigated the effects of PACAP on rat motoneurons in culture. In the presence of a phosphodiesterase inhibitor, PACAP showed significant neurotrophic activity at concentrations as low as 0.01 nM. Previously, we found that glutamate was excitotoxic to motoneurons even in the presence of brain-derived neurotrophic factor, which is neurotrophic for motoneurons. PACAP with a phosphodiesterase inhibitor protected motoneurons against this excitotoxicity. The activity of PACAP was inhibited by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide dihydrochloride, as was the case with the activity of forskolin, suggesting downstream involvement of a cAMP-protein kinase A signaling pathway. The present results may suggest a physiological role of PACAP in vivo, and implicate the PACAP-cAMP signaling pathway for the possible therapeutic target of amyotrophic lateral sclerosis as glutamate excitotoxicity was suggested in sporadic amyotrophic lateral sclerosis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号