首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   8篇
  国内免费   1篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   4篇
  2019年   2篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   13篇
  2013年   21篇
  2012年   11篇
  2011年   14篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1994年   2篇
  1991年   1篇
  1987年   2篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
1.
《Current biology : CB》2020,30(5):827-839.e4
  1. Download : Download high-res image (204KB)
  2. Download : Download full-size image
  相似文献   
2.
We determined the action spectra of the photophobic responses as well as the phototactic response in Dunaliella salina (Volvocales) using both single cells and populations. The action spectra of the photophobic responses have maxima at 510 nm, the spectrum for phototaxis has a maximum at 450–460 nm. These action spectra are not compatible with the hypothesis that flavoproteins are the photoreceptor pigments, and we suggest that carotenoproteins or rhodopsins act as the photoreceptor pigments. We also conclude that the phototactic response in Dunaliella is an elementary response, quite independent of the step-up and step-down photophobic responses. We also determined the action spectra of the photoaccumulation response in populations of cells adapted to two different salt conditions. Both action spectra have a peak a 490 nm. The photoaccumulation response may be a complex response composed of the phototactic and photophobic responses. Blue or blue-green light does not elicit a photokinetic response in Dunaliella.Diagrams of the optical set-ups used for measuring the responses at the single-cell level and of the plans for building the phototaxometer described in this paper are available to the interested readerWe thank Mr. M. Kubota for a tremendous amount of technical assistance and Mr. R. Nagy for building the phototaxometer. We thank T. Kondo, Professor H. Imaseki and the members of the Laboratory of Biological Regulation, NIBB, for their help and support in various aspects of this research. This research was supported, in part, from grants from the Okazaki Large Spectrograph (Project Nos. 86-535, 87-518, 88-523), the Japanese Society for the Promotion of Science, and the College of Agriculture and Life Sciences at Cornell University to R. W.  相似文献   
3.
Cilia are microtubule‐based structures that either transmit information into the cell or move fluid outside of the cell. There are many human diseases that arise from malfunctioning cilia. Although mammalian models provide vital insights into the underlying pathology of these diseases, aquatic organisms such as Xenopus and zebrafish provide valuable tools to help screen and dissect out the underlying causes of these diseases. In this review we focus on recent studies that identify or describe different types of human ciliopathies and outline how aquatic organisms have aided our understanding of these diseases.  相似文献   
4.
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883T, the type strain of T. acidaminovorans, stain Z-9701T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
5.
Turneriella parva Levett et al. 2005 is the only species of the genus Turneriella which was established as a result of the reclassification of Leptospira parva Hovind-Hougen et al. 1982. Together with Leptonema and Leptospira, Turneriella constitutes the family Leptospiraceae, within the order Spirochaetales. Here we describe the features of this free-living aerobic spirochete together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the genus Turneriella and the 13th member of the family Leptospiraceae for which a complete or draft genome sequence is now available. The 4,409,302 bp long genome with its 4,169 protein-coding and 45 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
6.
Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project “Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens” awarded through the 2010 DOE-JGI’s Community Sequencing Program.  相似文献   
7.
Cilia are microtubule-based hair-like organelles that project from the surface of most eukaryotic cells. They play critical roles in cellular motility, fluid transport and a variety of signal transduction pathways. While we have a good appreciation of the mechanisms of ciliary biogenesis and the details of their structure, many of their functions demand a more lucid understanding. One such function, which remains as intriguing as the time when it was first discovered, is how beating cilia in the node drive the establishment of left–right asymmetry in the vertebrate embryo. The bone of contention has been the two schools of thought that have been put forth to explain this phenomenon. While the ‘morphogen hypothesis’ believes that ciliary motility is responsible for the transport of a morphogen preferentially to the left side, the ‘two-cilia model’ posits that the motile cilia generate a leftward-directed fluid flow that is somehow sensed by the immotile sensory cilia on the periphery of the node. Recent studies with the mouse embryo argue in favour of the latter scenario. Yet this principle may not be generally conserved in other vertebrates that use nodal flow to specify their left–right axis. Work with the teleost fish medaka raises the tantalizing possibility that motility as well as sensory functions of the nodal cilia could be residing within the same organelle. In the end, how ciliary signalling is transmitted to institute asymmetric gene expression that ultimately induces asymmetric organogenesis remains unresolved.  相似文献   
8.
9.
10.
Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号