首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2967篇
  免费   434篇
  国内免费   320篇
  2024年   16篇
  2023年   75篇
  2022年   91篇
  2021年   125篇
  2020年   150篇
  2019年   148篇
  2018年   130篇
  2017年   153篇
  2016年   169篇
  2015年   164篇
  2014年   181篇
  2013年   230篇
  2012年   190篇
  2011年   177篇
  2010年   147篇
  2009年   155篇
  2008年   175篇
  2007年   145篇
  2006年   124篇
  2005年   112篇
  2004年   89篇
  2003年   85篇
  2002年   76篇
  2001年   60篇
  2000年   77篇
  1999年   49篇
  1998年   32篇
  1997年   39篇
  1996年   35篇
  1995年   34篇
  1994年   46篇
  1993年   29篇
  1992年   20篇
  1991年   28篇
  1990年   21篇
  1989年   15篇
  1988年   23篇
  1987年   15篇
  1986年   16篇
  1985年   19篇
  1984年   12篇
  1983年   5篇
  1982年   9篇
  1981年   4篇
  1980年   4篇
  1979年   7篇
  1978年   5篇
  1977年   3篇
  1975年   3篇
  1973年   2篇
排序方式: 共有3721条查询结果,搜索用时 590 毫秒
1.
1. Larvae of antlions (Neuroptera: Myrmeleontidae) and wormlions (Diptera: Vermileonidae) display a convergently evolved sit‐and‐wait hunting strategy of building pitfall traps in sandy areas. This study investigated a sympatric population of antlions and wormlions in the lowland rainforest of Borneo for substrate moisture, particle size and temperature preferences. It was hypothesised that these animals would show different preferences regarding these microhabitat traits. 2. The results showed that antlions had a higher aversion to moisture compared with wormlions, but that wormlions had a higher preference for small‐particle sand. Furthermore, thermal preferences in antlions and wormlions were significantly different, with antlions choosing higher temperatures. 3. The detected differences between antlions and wormlions might contribute to their niche partitioning in the mixed Bornean population and thus facilitate coexistence of these animals. It is possible that the hotter and dryer microhabitat edges are preferred by antlions.  相似文献   
2.
Aim To describe a protocol for incorporating a temporal dimension into historical biogeographical analysis, while maintaining the essential independence of all datasets, involving the generation of general area cladograms. Location Global. Methods General area cladograms (GACs) are a reconstruction of the evolutionary history of a set of areas and unrelated clades within those areas. Nodes on a GAC correspond to speciation events in a group of taxa; general nodes are those at which multiple unrelated clades speciate. We undertake temporal calibration of GACs using molecular clock estimates of splitting events between extant taxa as well as first appearance data from the fossil record. We present two examples based on re‐analysis of previously published data: first, a temporally calibrated GAC generated from secondary Brooks parsimony analysis (BPA) of six extant bird clades from the south‐west of North America using molecular clock estimates of divergence times; and second, an analysis of African Neogene mammals based on a phylogenetic analysis for comparing trees (PACT) analysis. Results A hypothetical example demonstrates how temporal calibration reveals potentially critical information about the timing of both unique and general events, while also illustrating instances of incongruence between dates generated from molecular clock estimates and fossils. For the African Neogene mammal dataset, our analysis reveals that most mammal clades underwent geodispersal associated with the Neogene climatic optimum (c. 16 Ma) and vicariant speciation in central Africa correlated with increased aridity and cooler temperatures around 2.5 Ma. Main conclusions Temporally calibrated GACs are valuable tools for assessing whether coordinated patterns of speciation are associated with large‐scale climatic or tectonic phenomena.  相似文献   
3.
Variation of scales on the blind side of Pseudopleuronectes yokohamae in relation to sex, maturity and body size was examined. Immature males often have cycloid scales, while mature males have mostly ctenoid scales. Large females also often have ctenoid scales (but with fewer spines compared with males), and small females have mostly cycloid scales. The number of spines (ctenii) on the blind‐side scale increases with body size in both sexes, indicating an ontogenetic change in scale morphology. As P. yokohamae spawn demersal eggs with males positioning themselves above the females on the ocular side, it is hypothesized that ctenoid scales on the blind side in mature males function for maintaining contact with females during spawning.  相似文献   
4.
The ecology, abundance and diversity of galatheoid squat lobsters make them an ideal group to study deep-sea diversification processes. Here, we reconstructed the evolutionary and biogeographic history of Leiogalathea, a genus of circum-tropical deep-sea squat lobsters, in order to compare patterns and processes that have affected shallow-water and deep-sea squat lobster species. We first built a multilocus phylogeny and a calibrated species tree with a relaxed clock using StarBEAST2 to reconstruct evolutionary relationships and divergence times among Leiogalathea species. We used BioGeoBEARS and a DEC model, implemented in RevBayes, to reconstruct ancestral distribution ranges and the biogeographic history of the genus. Our results showed that Leiogalathea is monophyletic and comprises four main lineages; morphological homogeneity is common within and between clades, except in one; the reconstructed ancestral range of the genus is in the Atlantic and Indian oceans (Tethys). They also revealed the divergence of the Atlantic species around 25 million years ago (Ma), intense cladogenesis 15–25 Ma and low levels of speciation over the last 5 million years (Myr). The four Leiogalathea lineages showed similar patterns of speciation: allopatric speciation followed by range expansion and subsequent stasis. Leiogalathea started diversifying during the Oligocene, likely in the Tethyan. The Atlantic lineage then split from its Indo-Pacific sister group due to vicariance driven by closure of the Tethys Seaway. The Atlantic lineage is less speciose compared with the Indo-Pacific lineages, with the Tropical Southwestern Pacific being the current centre of diversity. Leiogalathea diversification coincided with cladogenetic peaks in shallow-water genera, indicating that historical biogeographic events similarly shaped the diversification and distribution of both deep-sea and shallow-water squat lobsters.  相似文献   
5.
Troy Day  J. D. McPhail 《Oecologia》1996,108(2):380-388
We conducted an experiment to assess the change in foraging efficiency resulting from diet-induced morphological and behavioural plasticity in a species of freshwater, threespine stickleback (Gasterosteus sp.). Different degrees of morphological and behavioural change were induced using two prey items commonly found in the diet of this species, allowing us to estimate the relative importance of each type of plasticity. The purpose of the experiment was twofold. First, earlier work had suggested that diet variability might be an important factor in the evolution of trophic morphological plasticity in sticklebacks. The present results extend this work by revealing the adaptive significance of morphological plasticity. The current experiment also qualitatively assessed the compatibility of the time scale of morphological change with that of the natural resource variability experienced by this species. The results indicate that diet-induced plasticity improves foraging efficiency continuously for up to 72 days of prey exposure. This is probably due in part to plasticity of the external trophic morphology but our results also suggest a complex interplay between morphology and behaviour. The time scale appears to be matched to that of natural diet variability although it is possible that some traits exhibit non-labile plasticity. Our discussion highlights the important distinction between conditions favouring the evolution of labile versus non-labile plasticity. The second objective of the experiment was to determine the relative importance of morphological and behavioural plasticity. Few studies have attempted to quantify the adaptive significance of morphological plasticity and no study to our knowledge has separated the effects of morphological and behavioural plasticity. Our experiment reveals that both behavioural and morphological plasticity are important and it also suggests a dichotomy between the two: behavioural plasticity predominately affects searching efficiency whereas morphological plasticity predominately affects handling efficiency.  相似文献   
6.
《Journal of morphology》2017,278(1):4-28
The laterosensory system is a mechanosensory modality involved in many aspects of fish biology and behavior. Laterosensory perception may be crucial for individual survival, especially in habitats where other sensory modalities are generally useless, such as the permanently aphotic subterranean environment. In the present study, we describe the laterosensory canal system of epigean and subterranean species of the genus Ituglanis (Siluriformes: Trichomycteridae). With seven independent colonizations of the subterranean environment in a limited geographical range coupled with a high diversity of epigean forms, the genus is an excellent model for the study of morphological specialization to hypogean life. The comparison between epigean and subterranean species reveals a trend toward reduction of the laterosensory canal system in the subterranean species, coupled with higher intraspecific variability and asymmetry. This trend is mirrored in other subterranean fishes and in species living in different confined spaces, like the interstitial environment. Therefore, we propose that the reduction of the laterosensory canal system should be regarded as a troglomorphic (= cave‐related) character for subterranean fishes. We also comment about the patterns of the laterosensory canal system in trichomycterids and use the diversity of this system among species of Ituglanis to infer phylogenetic relationships within the genus. J. Morphol. 278:4–28, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   
7.
Aim The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high‐resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location The Mediterranean. Methods We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova) . These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo‐Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.  相似文献   
8.
9.
Summary Sequence divergence between the 3 long terminal repeats (LTR) of avian reticuloendotheliosis virus (REV), deletion variant proviral clone 2-20-4, and spleen necrosis virus (SNV)—proviral clones 14-44, 60, and 70—was found to involve two classes of base substitutions: low-frequency interspersed and high-frequency clustered substitutions. Clones 2-20-4 and 14-44 have diverged 4.4% owing to low-frequency substitutions. In contrast, two high-frequency substitution segments have diverged by 30% and 29%, respectively. Clustered substitutions appear to be located either within or next to tandem repeats, suggesting their introduction concomitant with sequence deletions and duplications commonly associated with such repeats. A new 19-bp tandem repeat is found in clone 2-20-4. Its sequence could have evolved from the 26-bp repeats found in the SNV clones.  相似文献   
10.
Twelve natural populations of Drosophila ananassae were sampled and laboratory populations were derived. All the populations were maintained in food bottles in the laboratory for ten generations by transferring fifty flies (females and males in equal number) in each generation. After ten generations they were analysed chromosomally to determine the frequency of different chromosome arrangements. The results show that there is significant variation in the frequencies of chromosome arrangements and in the level of inversion heterozygosity. Although some of the populations became mo-nomorphic for certain inversions, in general all populations remained polymorphic even after ten generations. The degree of genetic differentiation in the populations after they were transferred to laboratory conditions has been estimated by calculating genetic identity and distance between the initial and final populations based on the differences in chromosome arrangement frequencies. The estimates of I and D suggest that there is considerable variation in the degree of genetic divergence in D. ananassae populations. Some populations have remained unchanged while others have diverged to a considerable extent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号