首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1903篇
  免费   223篇
  国内免费   288篇
  2024年   11篇
  2023年   57篇
  2022年   64篇
  2021年   95篇
  2020年   104篇
  2019年   103篇
  2018年   80篇
  2017年   76篇
  2016年   97篇
  2015年   87篇
  2014年   99篇
  2013年   138篇
  2012年   108篇
  2011年   103篇
  2010年   90篇
  2009年   93篇
  2008年   110篇
  2007年   95篇
  2006年   81篇
  2005年   72篇
  2004年   59篇
  2003年   72篇
  2002年   55篇
  2001年   41篇
  2000年   54篇
  1999年   41篇
  1998年   25篇
  1997年   32篇
  1996年   28篇
  1995年   27篇
  1994年   31篇
  1993年   22篇
  1992年   17篇
  1991年   25篇
  1990年   14篇
  1989年   14篇
  1988年   13篇
  1987年   13篇
  1986年   14篇
  1985年   12篇
  1984年   8篇
  1983年   2篇
  1982年   8篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1975年   3篇
  1973年   3篇
排序方式: 共有2414条查询结果,搜索用时 0 毫秒
1.
The recent Forum contribution by Grime (2006) contrasts the MacArthur/Diamond assembly‐rule approach to studying plant communities with the study of environmental trait gradients. Both are valid and useful. In doing so, Grime declares that the assembly rules model, in which negative interactions between plants act with limiting similarity to cause local trait divergence, is “not supported by empirical study of plant communities”. This is, he says, the agony of community ecology. I show that there is now abundant evidence for assembly rules, and no agony.  相似文献   
2.
3.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   
4.
Variation of scales on the blind side of Pseudopleuronectes yokohamae in relation to sex, maturity and body size was examined. Immature males often have cycloid scales, while mature males have mostly ctenoid scales. Large females also often have ctenoid scales (but with fewer spines compared with males), and small females have mostly cycloid scales. The number of spines (ctenii) on the blind‐side scale increases with body size in both sexes, indicating an ontogenetic change in scale morphology. As P. yokohamae spawn demersal eggs with males positioning themselves above the females on the ocular side, it is hypothesized that ctenoid scales on the blind side in mature males function for maintaining contact with females during spawning.  相似文献   
5.
The ecology, abundance and diversity of galatheoid squat lobsters make them an ideal group to study deep-sea diversification processes. Here, we reconstructed the evolutionary and biogeographic history of Leiogalathea, a genus of circum-tropical deep-sea squat lobsters, in order to compare patterns and processes that have affected shallow-water and deep-sea squat lobster species. We first built a multilocus phylogeny and a calibrated species tree with a relaxed clock using StarBEAST2 to reconstruct evolutionary relationships and divergence times among Leiogalathea species. We used BioGeoBEARS and a DEC model, implemented in RevBayes, to reconstruct ancestral distribution ranges and the biogeographic history of the genus. Our results showed that Leiogalathea is monophyletic and comprises four main lineages; morphological homogeneity is common within and between clades, except in one; the reconstructed ancestral range of the genus is in the Atlantic and Indian oceans (Tethys). They also revealed the divergence of the Atlantic species around 25 million years ago (Ma), intense cladogenesis 15–25 Ma and low levels of speciation over the last 5 million years (Myr). The four Leiogalathea lineages showed similar patterns of speciation: allopatric speciation followed by range expansion and subsequent stasis. Leiogalathea started diversifying during the Oligocene, likely in the Tethyan. The Atlantic lineage then split from its Indo-Pacific sister group due to vicariance driven by closure of the Tethys Seaway. The Atlantic lineage is less speciose compared with the Indo-Pacific lineages, with the Tropical Southwestern Pacific being the current centre of diversity. Leiogalathea diversification coincided with cladogenetic peaks in shallow-water genera, indicating that historical biogeographic events similarly shaped the diversification and distribution of both deep-sea and shallow-water squat lobsters.  相似文献   
6.
Troy Day  J. D. McPhail 《Oecologia》1996,108(2):380-388
We conducted an experiment to assess the change in foraging efficiency resulting from diet-induced morphological and behavioural plasticity in a species of freshwater, threespine stickleback (Gasterosteus sp.). Different degrees of morphological and behavioural change were induced using two prey items commonly found in the diet of this species, allowing us to estimate the relative importance of each type of plasticity. The purpose of the experiment was twofold. First, earlier work had suggested that diet variability might be an important factor in the evolution of trophic morphological plasticity in sticklebacks. The present results extend this work by revealing the adaptive significance of morphological plasticity. The current experiment also qualitatively assessed the compatibility of the time scale of morphological change with that of the natural resource variability experienced by this species. The results indicate that diet-induced plasticity improves foraging efficiency continuously for up to 72 days of prey exposure. This is probably due in part to plasticity of the external trophic morphology but our results also suggest a complex interplay between morphology and behaviour. The time scale appears to be matched to that of natural diet variability although it is possible that some traits exhibit non-labile plasticity. Our discussion highlights the important distinction between conditions favouring the evolution of labile versus non-labile plasticity. The second objective of the experiment was to determine the relative importance of morphological and behavioural plasticity. Few studies have attempted to quantify the adaptive significance of morphological plasticity and no study to our knowledge has separated the effects of morphological and behavioural plasticity. Our experiment reveals that both behavioural and morphological plasticity are important and it also suggests a dichotomy between the two: behavioural plasticity predominately affects searching efficiency whereas morphological plasticity predominately affects handling efficiency.  相似文献   
7.
《Journal of morphology》2017,278(1):4-28
The laterosensory system is a mechanosensory modality involved in many aspects of fish biology and behavior. Laterosensory perception may be crucial for individual survival, especially in habitats where other sensory modalities are generally useless, such as the permanently aphotic subterranean environment. In the present study, we describe the laterosensory canal system of epigean and subterranean species of the genus Ituglanis (Siluriformes: Trichomycteridae). With seven independent colonizations of the subterranean environment in a limited geographical range coupled with a high diversity of epigean forms, the genus is an excellent model for the study of morphological specialization to hypogean life. The comparison between epigean and subterranean species reveals a trend toward reduction of the laterosensory canal system in the subterranean species, coupled with higher intraspecific variability and asymmetry. This trend is mirrored in other subterranean fishes and in species living in different confined spaces, like the interstitial environment. Therefore, we propose that the reduction of the laterosensory canal system should be regarded as a troglomorphic (= cave‐related) character for subterranean fishes. We also comment about the patterns of the laterosensory canal system in trichomycterids and use the diversity of this system among species of Ituglanis to infer phylogenetic relationships within the genus. J. Morphol. 278:4–28, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   
8.
9.
Testing for symmetry   总被引:1,自引:0,他引:1  
  相似文献   
10.
Abstract Colonies of Candida albicans wild-type strain 1001 were white and glossy, and this character was rather stably maintained. In contrast, 2 benomyl (methyl benzimidazole-2-yl-carbamate)-induced mutant strains, B17 and B14, that grew as long filamentous forms and displayed a rough-wrinkled colonial phenotype, switched to other colonial morphologies at significant frequencies. Clonal populations of B17 segregated smooth or sectored (rough/smooth) colonies at a frequency of 1.85%, when plated in nutrient-agar. Strains derived from these rough or smooth segregants switched back to one or the other phenotype at similar frequencies. Colonial variability in C. albicans B14 was not restricted to spontaneous switching from rough to smooth or vice versa, but eventually other types of variants, characterized as 'wavy' and 'fuzzy' were obtained, and shown to have their own capacity to switch. Smooth variants, derived from B14, were essentiallt unicellular, whereas fuzzy strains consisted only of long thin filaments, wavy and rough clones apparently being intermediate in their degree of filamentation. It is concluded that the capacity for colonial variation shown to exist in natural isolates could be activated by benomyl in others, such as 1001, which are quite stable and do not switch colonial morphology spontaneously.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号