首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2017年   1篇
  2008年   1篇
  2002年   1篇
  2001年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Thermal profile development, rates of heat uptake and annual heat budgets are presented for two monomictic lakes, Whatcom and Washington, in the Puget Sound lowlands of Washington State. The rates of heat gain in the lakes were found to be significantly affected by lake morphometry. In turn, the differing rates of heat gain affected the annual heat budgets.  相似文献   
2.
The abundances, biomass, and seasonal succession of rotifer and crustacean zooplankton were examined in a man-made, eutrophic lake, Lake Oglethorpe, over a 13 month period. There was an inverse correlation between the abundance of rotifers and crustaceans. Rotifers were most abundant and dominated (>69%) the rotifer-crustacean biomass during summer months (June–September) while crustacean zooplankton dominated during the remainder of the year (>89%). Peak biomasses of crustaceans were observed in the fall (151 µg dry wt l–1 in October) and spring (89.66 µg dry wt l–1 in May). Mean annual biomass levels were 46.99 µg dry wt l–1 for crustaceans and 19.26 µg dry wt l–1 for rotifers. Trichocerca rousseleti, Polyarthra sp., Keratella cochlearis and Kellicottia bostoniensis were the most abundant rotifers in the lake. Diaptomus siciloides and Daphnia parvula were the most abundant crustaceans. Lake Oglethorpe is distinct in having an unusually high abundance of rotifers (range 217–7980 l–1). These high densities can be attributed not only to the eutrophic conditions of the lake but also to the detailed sampling methods employed in this study.The research was supported by National Science Foundation grants DEB 7725354 and DEB 8005582 to Dr. K. G. Porter. It is lake Oglethorpe Limnological Association Contribution No. 25 and Contribution No. 371 of the Harbor Branch Foundation, Inc.  相似文献   
3.
Phytoplankton dynamics in a deep, tropical, hyposaline lake   总被引:3,自引:3,他引:0  
The annual variation of the phytoplankton assemblage of deep (64.6 m), hyposaline (8.5 g l–1) Lake Alchichica, central Mexico (19 ° N, 97° W), was analyzed in relation to thermal regime, and nutrients concentrations. Lake Alchichica is warm monomictic with a 3-month circulation period during the dry, cold season. During the stratified period in the warm, wet season, the hypolimnion became anoxic. N–NH3 ranged between non detectable (n.d.) and 0.98 mg l–1, N–NO2 between n.d. and 0.007 mg l–1, N–NO3 from 0.1 to 1.0 mg l–1 and P–PO4 from n.d. to 0.54 mg l–1. Highest nutrient concentrations were found in the circulation period. Chlorophyll a varied from <1 to 19.8 g l–1 but most values were <5 g l–1. The euphotic zone (>1% PAR) usually comprised the top 15–20 m. Nineteen algae species were identified, most of them are typical inhabitants of salt lakes. Diatoms showed the highest species number (10) but the small chlorophyte Monoraphidium minutum, the single-cell cyanobacteria, Synechocystis aquatilis, and the colonial chlorophyte, Oocystis parva, were the numerical dominant species over the annual cycle. Chlorophytes, small cyanobacteria and diatoms dominated in the circulation period producing a bloom comparable to the spring bloom in temperate lakes. At the end of the circulation and at the beginning of stratification periods, the presence of a bloom of the nitrogen-fixing cyanobacteria, N. spumigena, indicated nitrogen-deficit conditions. The well-stratified season was characterized by low epilimnetic nutrients levels and the dominance of small single-cell cyanobacteria and colonial chlorophytes. Phytoplankton dynamics in tropical Lake Alchichica is similar to the pattern observed in some deep, hyposaline, North American temperate lakes.  相似文献   
4.
1. Equilibrium and non-equilibrium hypotheses have often been used to explain observations in community ecology. Published case studies have demonstrated that steady state phytoplankton assemblages are more likely to occur in deep lakes than in shallow mixed ones.
2. Phytoplankton seasonal succession was studied by weekly sampling in Faxinal Reservoir (S Brazil), a subtropical deep, clear, warm monomictic and slightly eutrophic reservoir. This study demonstrated an alternation of steady and non-steady state phases of phytoplankton assemblages with different dominant species during the steady states.
3. During the studied period, three steady states were identified with different dominant algal species: Anabaena crassa (Cyanobacteria), Nephrocytium sp. (green algae) and Asterionella (diatoms).
4. Each steady state in Faxinal Reservoir developed under stratified conditions of the water column according to the predictions of the disturbance concepts. Apparently, the major forces driving the development and persistence of these steady-state phases were closely related to thermal stratification and its consequences.
5. This study is the first report on development of more than one steady state within a year in a stratified water body. The development of three steady states might be the result of the relatively long stratification period in the Faxinal Reservoir and to its unique geochemical features.  相似文献   
5.
Lake Zempoala was studied throughout 16 months in 1996–1997. It is a shallow monomictic lake situated at 2800 masl at the Neovolcanic Belt, well within the Mexican tropical zone. Most of the phytoplankton species in this lake may be characterized as temperate, according to their geographical distribution. A break down in phytoplankton biomass was observed before the lake's circulation, and open to question if a clear-water phase could be present in a tropical lake.  相似文献   
6.
Phytoplankton biomass values in Tavropos Reservoir, ranging from 92 to 1071 mg m–3, are within a range characteristic of oligotrophic waters. The seasonal sequence of biomass shows three annual peaks, differing from the monoacmic pattern seen in oligotrophic lakes. This sequence was profoundly affected by changes in water withdrawal and inflow rates. Diatoms, cryptophytes, chrysophytes and dinoflagellates, in that order, were the major constituents of the reservoir phytoplankton. The succession, from diatoms and chrysophytes in late winter-spring, to centric diatoms in late spring-summer and again to diatom-chrysophytes in late autumn was similar to that in oligotrophic lakes.  相似文献   
7.
8.
Abstract In order to relate the benthic lipid composition to possible sources in the water column, the sestonic communities of a monomictic lake were profiled using their saponifiable polar lipid fatty acids, which were identified by capillary gas chromatography-mass spectrometry (GC-MS). The epilimnion, dominated by the dinoflagellate alga Ceratium hirundella , was characterized by C20:5 and C22:6 polyunsaturated fatty acids. The photic anoxic metalimnion supported a radically different community, dominated by photosynthetic sulfur-oxidizing bacteria ( Chromatium and Chloronema spp.) and a Synechococcus -like cyanobacterium, and was characterized by high concentrations of C16 and C18 monounsaturated fatty acids. The fatty acid compositions of the hypolimnetic seston and the sediment were qualitatively similar to that of the metalimnion. Methyl-branched acids, commonly found in eubacteria, increased with depth in the water column. The concentrations of several unusual fatty acids found in Desulfovibrio spp. Desulfobacter spp. and Desulfotomaculum spp. were inversely related to sulfate concentration in the metalimnion. After the water column mixed in the winter, steep gradients of respiratory terminal electron acceptors developed in the surface sediment and were reflected in the polar lipid fatty acid compositions. The results show that fatty acids derived from the membranes of epilimnetic phytoplankton were efficiently metabolized in the oxic portion of the water column. The fatty acids synthesized by prokaryotic microorganisms at and below the oxycline dominated the sediment. The polar lipid fatty acid composition of the sediment showed seasonal changes which can be associated with concentrations of terminal electron acceptors of microbial respiration, and thus with physiologically distinct bacterial groups.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号