首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   5篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
Development of an L6 myoblast in vitro model of moniliformin toxicosis   总被引:1,自引:0,他引:1  
L6 myoblasts were used as an in vitro model to investigate the role of moniliformin and its interaction with monensin in turkey knockdown syndrome and sudden death syndromes in poultry. Cell viability and microscopic and ultrastructural alterations noted in L6 myoblasts cultured in the presence of moniliformin (0.0–0.3 g/l) were compared to those observed in parallel cultures also containing one of the following compounds: selenium (0–0.004 ng/l), thiamine (0–0.3 g/l), or pyruvate (0–0.46 g/l). Marked dilation of the RER, membranous whorls, glycogen deposition, membrane-bound cytoplasmic inclusions and necrosis were observed in myoblasts exposed to 0.03/2-0.30 g moniliformin/l medium. Supplementation of medium with thiamine and pyruvate, or selenium, provided significant protection to cells exposed to 0.0–0.3 g/l or 0.0–0.15 g moniliformin/l, respectively. Dose-dependent differences in protein and ATP production were not detected. Myoblasts grown in medium containing 0–0.15 g moniliformin/l and 7.5–50.0 M A23187, beauvericin or monensin had degrees of cytotoxicity similar to parallel cultures receiving only an ionophore. L6 myoblasts were a useful model of moniliformin toxicosis. The findings of this study suggest cytotoxicity due to moniliformin in L6 myoblasts may be due in part to oxidative damage and altered pyruvate metabolism, and that moniliformin does not predispose myoblasts to ionophore toxicosis. This study supports the results of in vivo investigations in poultry that moniliformin and monensin do not act synergistically to induce knockdown or monensin toxicosis.  相似文献   
2.
Pollen tubes of Nicotiana tabacum and Petunia hybrida show pulsatory growth. Phases of slow growth lasting minutes are interrupted by pulse-like elongations lasting 10–20 seconds involving an increase of growth rate by up to 24-fold. Inhibition of dictyosome activity with brefeldin A or monensin did not result in an inhibition of pulsatory growth but eventually stopped pollen tube elongation. In contrast to this the inhibition of the cytoskeletal elements with cytochalasin D and colchicine caused the pollen tubes to abandon the pulse-like elongations. It was concluded that the activity of the dictyosomes does not have a controlling function in the mechanism of pulsatory growth, even though it is necessary for pollen tube elongation, since cell wall material is provided by secretory vesicles deriving from the Golgi apparatus. In contrast the cytoskeletal elements, actin and microtubules, seem to play an important regulatory role in the pulse-like elongations. In addition, it was observed that during the experiments several pollen tubes burst upon the completion of a pulse-like expansion, indicating on the one hand that the internal turgor is the driving force of the pulse-like expansions. On the other hand, the bursting shows that the pollen tube cell wall is rather weak at the end of a pulse, indicating that at this point of time it is either thinner or less stable than during the slow growth phase or at the beginning of a pulse.  相似文献   
3.
Summary The effects of the sodium ionophore monensin on osmotic water flow across the urinary bladder of the toadBufo marinus were studied. Monensin alone did not alter osmotic water flow; however, the ionophore inhibited the hydrosmotic response to vasopressin and cyclic AMP in a dose-dependent manner. The inhibitory effects of monensin were apparent when the ionophore was added to the serosal bathing solution but not when it was added to the mucosal bathing solution. The inhibitory effect of serosal monensin required the presence of sodium in the serosal bathing solution but not the presence of calcium in the bathing solutions. Thus, it appears that intracellular sodium concentration is a regulator of the magnitude of the hydrosmotic response to vasopressin and cyclic AMP.  相似文献   
4.
The aim of this study was to assess the effect of carvacrol supplement as a dietary additive to rumen fermentors, fed a barley seed:alfalfa hay (70:30) ration and to compare its effect with monensin supplementation. The material was incubated with goat ruminal fluid and four different treatments were included: no additive (C), 7.5 mg/l monensin (M), 250 mg/l carvacrol (C250) and 500 mg/l carvacrol (C500). The addition of carvacrol reduced in vitro dry matter (DM), crude protein (CP) and neutral-detergent fibre (NDF) digestion. The effects induced by C250 on DM digestion at 72 h of incubation were comparable with those of M, whereas a greater reduction was obtained when carvacrol was supplemented at 500 mg/l concentration (68.9, 68.5 and 53.0 v. 76.1% for M, C250 and C500 v. C, respectively). The reduced CP potential degradability by supplements (51.2, 53.9 and 51.5 v. 72.8% for M, C250 and C500 v. C, respectively) was mainly caused by a reduction of the slowly degradable fraction. Volatile fatty acid (VFA) profiles determined after 48 h of incubation showed C250 increased butyrate and decreased acetate proportions, whereas M mainly stimulated propionate proportions, suggesting that the mechanism of action of carvacrol and M differs. C500 significantly reduced total VFA production. Carvacrol could be of great interest for its usage as a potential modulator of ruminal fermentation. Future research, including in vivo studies, in order to understand the factors that contribute to its antimicrobial activity and the selection of the optimal dose is required.  相似文献   
5.
ABSTRACT Trypomastigotes of Trypanosoma cruzi maintain an intracellular Ca2+ concentration([Ca2+]i) of 64 ± 30 nM. Equilibration of trypomastigotes in an extracellular buffer containing 0.5 mM [Ca2+]o (preloaded cells) increased [Ca2+]i < 20 nM whereas total cell Ca2+ increased by 1.5 to 2.0 pmole/cell. This amount of Ca2+ would be expected to increase [Ca2+]i to > 10 μM suggesting active sequestration of Ca2+. We tested the hypothesis that maintenance of [Ca2+]i involved both the sequestration into intracellular storage sites and extrusion into the extracellular space. Pharmacological probes known to influence [Ca2+]i through well characterized pathways in higher eukaryotic cells were employed. [Ca2+], responses in the presence or absence of [Ca2+]o were measured to asses the relative contribution of sequestration or extrusion processes in [Ca2+]i homeostasis. In the presence of 0.5 mM [Ca2+]o, the ability of several agents to increase [Ca2+]i was magnified in the order ionomycin ? nigericin > thapsigargin > monensin > valinomycin. In contrast, preloading markedly enhanced the increase in [Ca2+], observed only in response to monensin. Manoalide, an inhibitor of phospholipase A2, enhanced the accumulation of [Ca2+]i due to all agents tested, particularly ionomycin and thapsigargin. Our results suggest that sequestration of [Ca2+]i involved storage sites sensitive to monensin and ionomycin whereas extrusion of Ca2+ may involve phospholipase A2 activity. A Na+/Ca2+ exchange mechanism did not appear to contribute to Ca2+ homeostasis.  相似文献   
6.
Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5) that inhibits pure cultures of hyper ammonia-producing bacteria (HAB). Experiments were preformed to see if: (1) S. bovis HC5 cells could inhibit the deamination of amino acids by mixed ruminal bacteria taken directly from a cow, (2) semi-purified bovicin was as effective as S. bovis HC5 cells, and 3) semi-purified and the feed additive monensin were affecting the same types of ammonia-producing ruminal bacteria. Because purified and semi-purified bovicin HC5 was as effective as S. bovis HC5 cells, it appeared that bovicin HC5 was penetrating the cell membranes of HAB before it could be degraded by peptidases and proteinases. Mixed ruminal bacteria that were successively transferred and enriched nine times with trypticase did not become significantly more resistant to either bovicin HC5 (50 AU mL−1) or monensin (5 μM), and amplified rDNA restriction analysis indicated that bovicin HC5 and monensin appeared to be selecting against the same types of bacteria.  相似文献   
7.
采用紫外线对现有生产菌株进行诱变处理,再运用筛选剂丙酸、丁酸等对其进行选育,得到高产菌株M-3-01。投入中试车间发酵罐中,发酵效价达到50560×103u.L-1,其发酵能力比出发菌株提高了26%。  相似文献   
8.
9.
Monensin A methyl ester (MON1) was synthesized by a new method and its ability to form complexes with Li+, Na+, and K+ cations was studied by electrospray ionization-mass spectroscopy (ESI-MS), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and PM5 semiempirical methods. It is shown that MON1 with monovalent metal cations forms stable complexes of 1:1 stoichiometry. The structures of the complexes are stabilized by intramolecular hydrogen bonds in which the OH groups are always involved. In the structure of MON1, the oxygen atom of the C=O ester group is involved in very weak bifurcated intramolecular hydrogen bonds with two hydroxyl groups, whereas in the complexes of MON1 with monovalent metal cations the C=O ester group is not engaged in any intramolecular hydrogen bonds. Furthermore, it is demonstrated that the strongest intramolecular hydrogen bonds are formed within the MON1-Li+ complex structure. The structures of the MON1 and its complexes with Li+, Na+, and K+ cations are visualized and discussed in detail.  相似文献   
10.
Simple acyl thioesters are used as precursors for both the initiation and elongation steps in polyketide biosynthetic processes. Several structurally related polyketide products are sometimes made in these processes. These analogs are typically generated by a combination of two factors: availability of structurally similar biosynthetic precursors, and biosynthetic enzymes unable to effectively discriminate between them. Often, only one polyketide product is desired from a fermentation process, requiring a method to control the ratio of these different analogs. Preferential production of one desired analog is accomplished using random mutagenesis and manipulation of fermentation conditions. A genetic enzymatic understanding of polyketide biosynthesis, as well as the pathways that provide the relevant precursors, allows for a rational and more contemporary approach for control of analogs produced in fermentation processes. This approach involves genetic manipulation of either the pathways that provide pools of the acyl CoA thioester precursors, or the function/specificity of the appropriate biosynthetic enzymes. Reviewed herein are three such examples where these approaches have been carried out successfully with polyketide biosynthetic processes. Journal of Industrial Microbiology & Biotechnology (2001) 27, 368–377. Received 01 March 2001/ Accepted in revised form 08 August 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号