首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15808篇
  免费   1529篇
  国内免费   982篇
  2024年   42篇
  2023年   401篇
  2022年   402篇
  2021年   581篇
  2020年   653篇
  2019年   839篇
  2018年   797篇
  2017年   656篇
  2016年   766篇
  2015年   723篇
  2014年   813篇
  2013年   1645篇
  2012年   656篇
  2011年   703篇
  2010年   616篇
  2009年   718篇
  2008年   795篇
  2007年   776篇
  2006年   760篇
  2005年   647篇
  2004年   611篇
  2003年   560篇
  2002年   505篇
  2001年   362篇
  2000年   329篇
  1999年   260篇
  1998年   258篇
  1997年   234篇
  1996年   182篇
  1995年   157篇
  1994年   136篇
  1993年   109篇
  1992年   104篇
  1991年   67篇
  1990年   51篇
  1989年   40篇
  1988年   32篇
  1987年   25篇
  1986年   16篇
  1985年   30篇
  1984年   54篇
  1983年   36篇
  1982年   45篇
  1981年   35篇
  1980年   22篇
  1979年   14篇
  1978年   17篇
  1977年   14篇
  1974年   6篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
2.
A faster rate of nuclear DNA evolution has recently been found for plants occupying warmer low latitudes relative to those in cooler high latitudes. That earlier study by our research group compared substitution rates within the variable internal transcribed spacer (ITS) region of the ribosomal gene complex amongst 45 congeneric species pairs, each member of which differed in their latitudinal distributions. To determine whether this rate differential might also occur within highly conserved DNA, we sequenced the 18S ribosomal gene in the same 45 pairs of plants. We found that the rate of evolution in 18S was 51% faster in the tropical plant species relative to their temperate sisters and that the substitution rate in 18S correlated positively with that in the more variable ITS. This result, with a gene coding for ribosomal structure, suggests that climatic influences on evolution extend to functionally important regions of the genome.  相似文献   
3.
Telomere DNA-binding proteins protect the ends of chromosomes in eukaryotes. A subset of these proteins are constructed with one or more OB folds and bind with G+T-rich single-stranded DNA found at the extreme termini. The resulting DNA-OB protein complex interacts with other telomere components to coordinate critical telomere functions of DNA protection and DNA synthesis. While the first crystal and NMR structures readily explained protection of telomere ends, the picture of how single-stranded DNA becomes available to serve as primer and template for synthesis of new telomere DNA is only recently coming into focus. New structures of telomere OB fold proteins alongside insights from genetic and biochemical experiments have made significant contributions towards understanding how protein-binding OB proteins collaborate with DNA-binding OB proteins to recruit telomerase and DNA polymerase for telomere homeostasis. This review surveys telomere OB protein structures alongside highly comparable structures derived from replication protein A (RPA) components, with the goal of providing a molecular context for understanding telomere OB protein evolution and mechanism of action in protection and synthesis of telomere DNA.  相似文献   
4.
(+)-2,9 alpha-Dimethyl-5-(m-hydroxyphenyl)morphan is the only phenylmorphan analog whose affinity for opioid kappa-receptors is greater than its affinity for opioid mu-receptors. Pharmacologically, the compound is a pure opioid antagonist devoid of agonist activity in in vivo assays of antinociception. The absolute configuration of the compound has been determined to be (1R,5S,9R) from an X-ray crystallographic study of the chloride salt. Thus, the absolute configuration corresponds to that of the atypical opioid agonist (-)-phenylmorphan while the weak atypical agonist (-)-2,9 alpha-dimethyl-5-(m- hydroxyphenyl)morphan corresponds to the potent morphine-like (+)-phenylmorphan. The preferred orientations of the phenyl ring for the two stereoisomers were determined using the molecular mechanics program MM2-87 and found to vary from that of the two parent compounds. The atypical properties of the two 9 alpha-methyl analogs is consistent with an opioid ligand model which proposes that morphine-like properties require a particular range of phenyl orientations. There was good agreement between the structure obtained from X-ray crystallography and computed with the MM2-87 program.  相似文献   
5.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
6.
Since the first revelation of proteins functioning as macromolecular machines through their three dimensional structures, researchers have been intrigued by the marvelous ways the biochemical processes are carried out by proteins. The aspiration to understand protein structures has fueled extensive efforts across different scientific disciplines. In recent years, it has been demonstrated that proteins with new functionality or shapes can be designed via structure-based modeling methods, and the design strategies have combined all available information — but largely piece-by-piece — from sequence derived statistics to the detailed atomic-level modeling of chemical interactions. Despite the significant progress, incorporating data-derived approaches through the use of deep learning methods can be a game changer. In this review, we summarize current progress, compare the arc of developing the deep learning approaches with the conventional methods, and describe the motivation and concepts behind current strategies that may lead to potential future opportunities.  相似文献   
7.
Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks.  相似文献   
8.
To effectively integrate DNA sequence analysis and classical nematode taxonomy, we must be able to obtain DNA sequences from formalin-fixed specimens. Microdissected sections of nematodes were removed from specimens fixed in formalin, using standard protocols and without destroying morphological features. The fixed sections provided sufficient template for multiple polymerase chain reaction-based DNA sequence analyses.  相似文献   
9.
Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co‐evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号