首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1921篇
  免费   131篇
  国内免费   170篇
  2024年   3篇
  2023年   18篇
  2022年   40篇
  2021年   46篇
  2020年   56篇
  2019年   60篇
  2018年   64篇
  2017年   55篇
  2016年   50篇
  2015年   55篇
  2014年   126篇
  2013年   185篇
  2012年   117篇
  2011年   148篇
  2010年   90篇
  2009年   101篇
  2008年   151篇
  2007年   132篇
  2006年   111篇
  2005年   97篇
  2004年   54篇
  2003年   54篇
  2002年   49篇
  2001年   43篇
  2000年   36篇
  1999年   41篇
  1998年   30篇
  1997年   20篇
  1996年   15篇
  1995年   24篇
  1994年   13篇
  1993年   11篇
  1992年   9篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1985年   11篇
  1984年   9篇
  1983年   14篇
  1982年   18篇
  1981年   11篇
  1980年   13篇
  1979年   7篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1967年   1篇
排序方式: 共有2222条查询结果,搜索用时 15 毫秒
1.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
2.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
3.
Monte Carlo simulations and a modified Poisson–Boltzmann (MPB) theory are used to investigate the temperature dependence of the capacitance (around the potential of zero charge) of an electric double layer in the presence of surface polarization due to a dielectric boundary. Within the context of the restricted primitive model planar double layer, whose solvent dielectric constant is ε2, the cases when the electrode is an insulator (ε1 = 1), when the electrode and the electrolyte have the same permittivity (ε1 = ε2, no polarization), and when the electrode is a conductor (ε1 → ∞) are studied for the case where the electrolyte concentration is 0.1 M. The simulations reveal a capacitance anomaly, that is, a positive temperature dependence of the capacitance at low temperatures for the former two situations. The MPB theory also shows this effect for these two situations and is in qualitative or better agreement with the simulation data. In these two cases, both the simulations and theory show a dramatic increase of the diffuse layer potential in the temperature regime where capacitance anomaly occurs. However, in the latter situation, where the electrode is metallic, the capacitance always has a negative temperature derivative for the MPB theory and probably also for the simulation data.  相似文献   
4.
《植物生态学报》2015,39(8):816
Aims Fractal root system is phenotypic plasticity result of plant root architecture to respond to environmental heterogeneity, may reflect the growth strategy of plants to adapt to environmental conditions. Our objective was to explore the relationship between root fractal dimension and fractal abundance of fractal root system of Melica przewalskyi population in response to aspect variation in the northwest of China. Methods The study site was located in a degraded alpine grassland on the northern slope in Qilian Mountains, Gansu Province, China. Survey and sampling were carried out at 40 plots which were set up along four slope aspects transects with 20 m distance between adjacent plots. Handheld GPS was used to determine the elevation, longitude and latitude of each plot. ArcGIS was used to set up digital elevation model (DEM). Community traits were investigated and six individuals roots of M. przewalskyi were collected randomly at each plot. The samples were cleaned and divided into different organs, then scanning the root with the Win-RHIZO for measurements of fractal dimension and fractal abundance in laboratory, and their biomass were then measured after being dried at 80 °C in an oven. Important findings With the slope aspect turned from north to east, west, and south, the density, height and soil moisture content of the plant community displayed a pattern of initial decline, the height, density, root fractal abundance of M. przewalskyi increased and the root fractal dimension decreased. The root fractal dimension was negatively associated with the fractal abundance in all aspects, but the relationship varied along the slope aspects gradient; there was a highly significant negative correlation (p < 0.01) between the root fractal dimension and fractal abundance at north slope and south slope aspect, whereas the correlation only reached a significant level (p < 0.05) at the east slope aspect and west slope aspect; indicating that there is a trade-off between the root fractal dimension and fractal abundance. In addition, when the slope aspect changed from north to east, west and south, the standardized major axis (SMA) slope of the regression equation in the scaling relationships between root fractal dimension and fractal abundance increased (p < 0.05), indicating that the roots of M. przewalskyi at the droughty southern slope have less branch and more sparse in the same soil volume of root exploitation and utilization. Consequently, the resource allocation pattern on reasonable trade-off between root fractal dimension and fractal abundance in different slope aspect of M. przewalskyi, reflects the relationship between the income and the cost of construction of plant root architecture.  相似文献   
5.
The bifunctional compound, ethylene-glycol bis(N-hydroxysuccinimidylsuccinate) (EGNHS), stabilizes horseradish peroxidase C (HRP) by reaction with the enzyme's lysine residues. In this study we compare native and modified HRP by proteolytic fragmentation, peptide sequencing, and mass spectroscopy, and identify the sites of modification. Most significantly, EGNHS is shown to form a crosslink between Lys232 and Lys241 of HRP and modifies Lys174 without formation of a crosslink. These findings are in agreement with the lysine side-chain reactivities predicted from the surface accessibility of the amino groups, and the maximal span of 16 A of the EGNHS crosslinker.  相似文献   
6.
The mean dimensions of thecis N-methyl peptide unit have been arrived at by analysing the crystal structure data on compounds containing such units. These dimensions can be used as standard in conformational studies on cyclic peptides. While the bonds meeting at C are almost coplanar, those meeting at N show a slight pyramidal disposition. A comparison of the dimensions of the normal and N-methylatedcis peptide units show that there are perceptible differences in the parameters connected with N. In addition, the flexibility of thecis peptide unit has been analysed by studying the distribution of the parameters in different classes of compounds such as cyclic di, tri and higher peptides. The salient features are: (i) The angle CαCN in cyclic dipeptide and the angle CδNCα in higher peptides tend to be lower, when the peptide unit is associated with a prolyl residue; (ii) in cyclic tripeptides the internal anglesviz., CαCN and CNCα are significantly larger thereby increasing the intra-annular space; (iii) the bond Cα-C is distinctly shorter when it occurs in cyclic dipeptides. The results lead to the conclusion that thecis peptide unit takes up aneed-based flexibility in its dimension.  相似文献   
7.
A theoretical model is proposed to describe the influence of a periodic electric field (PEF) upon a biopolymer. The biopolymer is treated as a classical mechanical system consisting of subsystems (molecular groups) which interact with each other through potential forces. The PEF is treated as a periodic driving force applied to a molecular group. The energy dissipation is considered using the model of fluid (viscous) friction. Arguments for the non-linear character of the friction-velocity dependence caused by the non-Newtonian rheology of a viscous medium are formulated.A forced molecular-group motion is investigated for the situation of a small driving-force period, with oscillations overdamped and a driving force consisting of more than one harmonic. As a result, it is established that the motion always gets to a terminal stage when only a small-scale vibration about some point, X *, takes place. The terminal motion is preceded by a transient characterized by the presence of a directional velocity component and so by a drift along a potential profile. the drift goes on until a barrier is met which has a sufficiently large steepness (the barrier height is not important). As a result, the point X * may happen to be remote from the conformation potential local minimum (conformational state). The physical reasons for the drift are described.If we consider the small-scale vibration about X * in the framework of the hierarchy of scales for intramolecular mobility, it can be regarded as an equilibrium mobility, whereas the drift can be regarded as a functionally important motion, and X * as a new conformational state which is realizable only in the presence of the PEF. It may be concluded, as the result of a consistent treatment and neglecting the small-scale vibration, that the conformational potential is modified by adding a linear term (in the one-dimensional case). In this connection, the set of conformational states can both deform (deviation of the positions of minima and their relative depth) and rearrange qualitatively (some minima can vanish and/or new minima can appear). In particular, the transition from one conformation to another one may happen due to rearrangement.  相似文献   
8.
Rates of CO2 production and O2 consumption from aged disks of carrot ( Daucus carota L.) root tissues were measured for 4 h after they were transferred from 21% to 0, 1, 2, 4 or 8% O2 in gas mixtures. A transient peak in the rate of CO2 production started 5 to 7 min after transfer to 2% or lower O2 mixtures and peaked at 50 min. After the peaks in CO2 production from the 0, 1 and 2% O2 treatments and after the stable production from the 4 and 8% O2 treatments, the rate of CO2 production from all low O2 treatments started to decline at 50 min, reaching stable rates by 160 to 240 min. Concentrations of lactate and ethanol that were significantly higher than the 21% O2 controls had started to accumulate in disks between 10 and 50 min after exposure to atmospheres containing 2% or less O2. Production of CO2 started to increase 5 to 7 min after transfer to 0, 1 and 2% O2, while the initial decline and then rise in pH and the accumulation of ethanol did not occur until 30 min after the change in atmosphere. Ethanol accumulation paralleled the increase in pH; first at 0.4 μmol g−1 h−1 from 30 to 60 min as the pH shifted from 5.97 to 6.11, and then at 0.08 μmol g−1 h−1 from 60 to 100 min as the pH stablized around 6.12. The peak at 50 min in CO2 production roughly coincided with the shift from the rapid to the slow change in pH and ethanol accumulation.  相似文献   
9.
GH3 cells can be used effectively to study the in vitro mechanism of action of GRF. In these cells, there is a time and concentration-dependent release of cAMP into the medium. Rat hypothalamic GRF, (rGRF) is 7 to 10 fold more active than human hypothalamic GRF (hGRF). VIP, a peptide which is structurally homologous to GRF, stimulates cAMP efflux in GH3 cells, with a higher affinity than hGRF or rGRF. We propose that in contradistinction to the normal rat pituitary, the stimulation of cAMP release by GRF in GH3 cells occurs via activation of VIP-preferring receptors and that GRF (rGRF in particular) behaves as a partial VIP agonist.  相似文献   
10.
Regulation of Na/K/Cl cotransport in vascular smooth muscle cells   总被引:3,自引:0,他引:3  
The regulation of Na/K/Cl cotransport was investigated in vascular smooth muscle cells. That a Na/K/Cl cotransport system exists was established by the finding that the ouabain insensitive K influx was sensitive to the "loop" diuretic bumetanide. Furthermore, bumetanide sensitive K influx was dependent upon the presence of both Na and Cl in the extracellular milieu. Bumetanide sensitive K influx was inhibited by agents which elevate cellular cyclic AMP levels, and to a lesser extent by agents which elevate cellular cyclic GMP levels. When serum, EGF or TPA was added, bumetanide sensitive K influx was enhanced. These results suggest that vascular smooth muscle cells have a ouabain insensitive, bumetanide sensitive Na/K/Cl cotransport system which is stimulated by serum, EGF or TPA and inhibited by cAMP or cGMP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号