首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   11篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.  相似文献   
2.
Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747‐Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA‐sequencing, RAD‐sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA‐sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO‐lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage‐specific selection on mitochondria‐related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population.  相似文献   
3.
The uniparental inheritance (UPI) of mitochondria is thought to explain the evolution of two mating types or even true sexes with anisogametes. However, the exact role of UPI is not clearly understood. Here, we develop a new model, which considers the spread of UPI mutants within a biparental inheritance (BPI) population. Our model explicitly considers mitochondrial mutation and selection in parallel with the spread of UPI mutants and self-incompatible mating types. In line with earlier work, we find that UPI improves fitness under mitochondrial mutation accumulation, selfish conflict and mitonuclear coadaptation. However, we find that as UPI increases in the population its relative fitness advantage diminishes in a frequency-dependent manner. The fitness benefits of UPI ‘leak’ into the biparentally reproducing part of the population through successive matings, limiting the spread of UPI. Critically, while this process favours some degree of UPI, it neither leads to the establishment of linked mating types nor the collapse of multiple mating types to two. Only when two mating types exist beforehand can associated UPI mutants spread to fixation under the pressure of high mitochondrial mutation rate, large mitochondrial population size and selfish mutants. Variation in these parameters could account for the range of UPI actually observed in nature, from strict UPI in some Chlamydomonas species to BPI in yeast. We conclude that UPI of mitochondria alone is unlikely to have driven the evolution of two mating types in unicellular eukaryotes.  相似文献   
4.
5.

Aim

Savanna biomes cover around 20% of land surfaces, yet the origins and processes that have shaped their biodiversity remain understudied. Here, we assess the timing of diversification and how patterns of genetic diversity vary along an aridity gradient in specialized saxicoline gecko clades (Oedura spp.) from the tropical savannas of northern Australia.

Location

Australian Monsoonal Tropics (AMT), Kimberley region (Western Australia).

Methods

We compiled mitochondrial and nuclear data for two Kimberley endemic lizard clades (Oedura filicipoda/murrumanu and O. gracilis), and allied non‐Kimberley taxa (O. marmorata complex). Species delimitation methods were used to identify evolutionary lineages, Maximum‐likelihood and Bayesian phylogenetic methods were employed to assess relationships and diversification timeframes, and rainfall data and range sizes were tested for correlations.

Results

Phylogenetic analyses of cryptic or recently discovered lineage diversity revealed late‐Miocene to early‐Pliocene crown ages. Microendemism and diversity were highest in high‐rainfall regions, while the most widespread lineages occurred in the central and south‐east Kimberley, and showed evidence of introgression with parapatric lineages.

Main conclusions

The initial diversification in both clades was broadly concordant with global climatic events linked to the expansion of savanna biomes in the lateMiocene. Higher endemism in mesic and refugial areas suggests long histories of localized persistence, while wider distributions and evidence of introgression suggest a dynamic history at the arid‐monsoonal interface.  相似文献   
6.
Seabirds, particularly Procellariiformes, are highly mobile organisms with a great capacity for long dispersal, though simultaneously showing high philopatry, two conflicting life‐history traits that may lead to contrasted patterns of genetic population structure. Landmasses were suggested to explain differentiation patterns observed in seabirds, but philopatry, isolation by distance, segregation between breeding and nonbreeding zones, and oceanographic conditions (sea surface temperatures) may also contribute to differentiation patterns. To our knowledge, no study has simultaneously contrasted the multiple factors contributing to the diversification of seabird species, especially in the gray zone of speciation. We conducted a multilocus phylogeographic study on a widespread seabird species complex, the little shearwater complex, showing highly homogeneous morphology, which led to considerable taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all extant populations from the Atlantic (lherminieri) and Indian Oceans (bailloni), that is, five nominal lineages from 13 populations, along with one population from the eastern Pacific Ocean (representing the dichrous lineage). We found sharp differentiation among populations separated by the African continent with both mitochondrial and nuclear markers, while only mitochondrial markers allowed characterizing the five nominal lineages. No differentiation could be detected within these five lineages, questioning the strong level of philopatry showed by these shearwaters. Finally, we propose that Atlantic populations likely originated from the Indian Ocean. Within the Atlantic, a stepping‐stone process accounts for the current distribution. Based on our divergence time estimates, we suggest that the observed pattern of differentiation mostly resulted from historical and current variation in sea surface temperatures.  相似文献   
7.
Differential introgression of mitochondrial vs. nuclear DNA generates discordant patterns of geographic variation and can promote population divergence and speciation. We examined a potential case of mitochondrial introgression leading to two perpendicular axes of differentiation. The Eastern Yellow Robin Eopsaltria australis, a widespread Australian bird, shows a deep mitochondrial split that is perpendicular to north–south nuclear DNA and plumage colour differentiation. We propose a scenario to explain this pattern: (i) first, both nuclear and mitochondrial genomes differentiated in concert during north–south population divergence; (ii) later, their histories disconnected after two mitochondrial introgression events resulting in a deep mitochondrial split perpendicular to the nuclear DNA structure. We explored this scenario by coalescent modelling of ten mitochondrial genes and 400 nuclear DNA loci. Initial mitochondrial and nuclear genome divergences were estimated to have occurred in the early Pleistocene, consistent with the proposed scenario. Subsequent climatic transitions may have driven later mitochondrial introgression. We consider neutral introgression unlikely and instead propose that the evidence is more consistent with adaptive mitochondrial introgression and selection against incompatible mitochondrial‐nuclear combinations. This likely generated an axis of coastal‐inland mitochondrial differentiation in the face of nuclear gene flow, perpendicular to the initial north–south axis of differentiation (reflected in genomewide nuclear DNA and colour variation).  相似文献   
8.
The ancient acquisition of the mitochondrion into the ancestor of modern‐day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life‐history traits such as fertility, development and longevity. To examine whether these broad‐scale effects on life‐history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context‐dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex‐ and age‐specific genetic effects are likely to resonate across the entire organismal life‐history, providing insights into how mitochondrial genetic variation may contribute to sex‐specific trajectories of life‐history evolution.  相似文献   
9.
Coordination between nuclear and mitochondrial genomes is critical to metabolic processes underlying animals' ability to adapt to local environments, yet consequences of mitonuclear interactions have rarely been investigated in populations where individuals with divergent mitochondrial and nuclear genomes naturally interbreed. Genetic variation in the leaf beetle Chrysomela aeneicollis was assessed along a latitudinal thermal gradient in California's Sierra Nevada. Variation at mitochondrial cytochrome oxidase II (COII) and the nuclear gene phosphoglucose isomerase (PGI) shows concordance and was significantly greater along a 65 km transect than 10 other loci. STRUCTURE analyses using neutral loci identified a southern and northern subpopulation, which interbreed in the central drainage Bishop Creek. COII and PGI were used as indicators of mitochondrial and nuclear genetic variation in field and laboratory experiments conducted on beetles from this admixed population. Fecundity, larval development rate, running speed and male mating frequency were higher for beetles with geographically “matched” than “mismatched” mitonuclear genotypes. Effects of mitonuclear mismatch were largest for individuals with northern nuclear genotypes possessing southern mitochondria and were most pronounced after heat treatment or at high elevation. These findings suggest that mitonuclear incompatibility diminishes performance and reproductive success in nature, effects that could intensify at environmental extremes.  相似文献   
10.
Mitochondria are descended from free-living bacteria that were engulfed by another cell between one and a half to two billion years ago. A redistribution of DNA led to most genetic information being lost or transferred to a large central genome in the nucleus, leaving a residual genome in each mitochondrion. Oxidative phosphorylation, the most critical function of mitochondria, depends on the functional compatibility of proteins encoded by both the nucleus and mitochondria. We investigate whether selection for adaptation between the nuclear and mitochondrial genomes (mitonuclear co-adaptation) could, in principle, have promoted uniparental inheritance of mitochondria and thereby the evolution of two mating types or sexes. Using a mathematical model, we explore the importance of the radical differences in ploidy levels, sexual and asexual modes of inheritance, and mutation rates of the nucleus and mitochondria. We show that the major features of mitochondrial inheritance, notably uniparental inheritance and bottlenecking, enhance the co-adaptation of mitochondrial and nuclear genes and therefore improve fitness. We conclude that, under a wide range of conditions, selection for mitonuclear co-adaptation favours the evolution of two distinct mating types or sexes in sexual species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号