首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10950篇
  免费   666篇
  国内免费   602篇
  2024年   29篇
  2023年   192篇
  2022年   307篇
  2021年   425篇
  2020年   316篇
  2019年   407篇
  2018年   379篇
  2017年   284篇
  2016年   277篇
  2015年   388篇
  2014年   478篇
  2013年   744篇
  2012年   376篇
  2011年   392篇
  2010年   323篇
  2009年   449篇
  2008年   495篇
  2007年   455篇
  2006年   479篇
  2005年   459篇
  2004年   442篇
  2003年   381篇
  2002年   370篇
  2001年   327篇
  2000年   249篇
  1999年   247篇
  1998年   225篇
  1997年   201篇
  1996年   205篇
  1995年   174篇
  1994年   202篇
  1993年   166篇
  1992年   159篇
  1991年   144篇
  1990年   137篇
  1989年   111篇
  1988年   115篇
  1987年   105篇
  1986年   95篇
  1985年   94篇
  1984年   93篇
  1983年   50篇
  1982年   63篇
  1981年   60篇
  1980年   38篇
  1979年   31篇
  1978年   16篇
  1977年   17篇
  1974年   15篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Developmental cell》2021,56(21):2952-2965.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
2.
Abstract

In Arabidopsis thaliana, cell fate in developing ovules is determined by the action of the homeodomain factor BELL1 (BEL1) and of the MADS-box factors SEEDSTICK (STK), SHATTERPROOF1 (SHP1) and SHP2. The analysis of the bel1 and the stk shp1 shp2 mutants revealed that the functional megaspore is formed, however, it does not proceed into megagametogenesis. In the bel1 stk shp1 shp2, quadruple mutant megasporogenesis does not take place. In this article we describe a detailed morphological analysis of the quadruple mutant, and we discuss the possibility that BELL1, STK, SHP1 and SHP2 not only control integument identity determination and development, but that they might also play a role during megasporogenesis.  相似文献   
3.
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
Highlights
  • •XL-MS reveals new PPIs in yeast mitochondria under glycerol and glucose condition.
  • •Significant but limited results from quantitative XL-MS experiments.
  • •Ndi1 participates in a CIII2CIV2 respiratory supercomplex.
  • •Min8 promotes assembly of Cox12 into an intermediate complex IV.
  相似文献   
4.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
5.
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
Highlights
  • •Flow cytometry analysis is used to isolate ASC speck(+) NPC cells.
  • •Proteome analysis of ASC speck(+) NPC cells reveals enriched mitochondrial OxPhos proteins.
  • •OxPhos proteins mediate NLRP3 inflammasome activation through mtROS.
  • •OxPhos proteins, NDUFB8 and ATP5B are correlated with NPC local recurrence.
  相似文献   
6.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   
7.
Summary Collagen genes appear to have been assembled by the tandem repetition of homologous primary (9 base pair), secondary (54 base pair), and tertiary (702 base pair) modules. In vertebrate interstitial collagen genes many of the secondary modules are separated by introns, but in invertebrate collagen genes the non-coding sequences lie near the ends of supposed tertiary modules and are therefore about 702 (54×13) base pairs apart. The genes for vertebrate interstitial collagens (types I–III) seem to have been constructed by the tandem repetition of five tertiary modules, three of which were subsequently shortened by internal deletions. This shortening of the gene resulted in the non-integral relationship between the period of the fibrils and the length of the molecules of vertebrate collagens, and was therefore responsible for the mechanical properties of the completed product. Comparisons of the amino acid sequences of various collagens indicate that the main types of collagen evolved about 800–900 million years ago, a date that agrees well with the fossil record of primitive Metazoa.  相似文献   
8.
9.
This lecture is devoted to the relative contribution of various levels of regulation of the actin cytoskeleton functioning in the cell. Regulation at the levels of gene expression, mRNA and protein synthesis and stability, processes of actin polymerization/depolymerization and actin structures reorganization is briefly considered. Novel information about the pathways of signal transduction to the actin cytoskeleton with the involvement of Arp2/3 complex and RIC proteins is highlighted.  相似文献   
10.
Raillietina saudiae is a well-studied avian gastrointestinal parasite belonging to the family Davaineidae and is the most prevalent cyclophyllid tapeworm infecting pigeon in Saudi Arabia. The present study considered as a complementary analysis of Al-Quraishy et al. (2019; Parasitol Int 71 , 59–72) with molecular studies for two ribosomal DNA genes employed for precise recognition of this Raillietina species. The annotated partial 18S and 28S rDNA gene regions were found to be 888 and 900 bp long that utilized further to elucidate their genetic relationships at species level using maximum likelihood method. The query sequence of R. saudiae is well aligned and placed within the Davaineidae family, with the same clade of all species of Raillietina that well separated from other cyclophyllidean cestodes especially taeniid and hymenolepid species. Sequence data recorded the monophyly of Raillietina species. The current phylogeny supports the usage of the partial 18S and 28S rDNA genes as reliable markers for phylogenetic reconstructions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号