首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1篇
  2007年   1篇
排序方式: 共有1条查询结果,搜索用时 2 毫秒
1
1.
We previously reported that inhibition of mitochondrial complex I (CI) by rotenone induces marked increases in mitochondrial length and degree of branching, thus revealing a relationship between mitochondrial function and shape. We here describe the first time use of fluorescence correlation spectroscopy (FCS) to simultaneously probe mitochondrial mobility and intra-matrix protein diffusion, with the aim to investigate the effects of chronic CI inhibition on the latter two parameters. To this end, EYFP was expressed in the mitochondrial matrix of human skin fibroblasts (mitoEYFP) using baculoviral transduction and its diffusion monitored by FCS. This approach revealed the coexistence of moving and stationary mitochondria within the same cell and enabled simultaneous quantification of mitochondrial velocity and mitoEYFP diffusion. When CI activity was chronically reduced by 80% using rotenone treatment, the percentage of moving mitochondria and their velocity decreased by 30%. MitoEYFP diffusion did not differ between moving and stationary mitochondria but was increased 2-fold in both groups of mitochondria following rotenone treatment. We propose that the increase in matrix protein diffusion together with the increase in mitochondrial length and degree of branching constitutes part of an adaptive response which serves to compensate for the reduction in CI activity and mitochondrial motility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号