首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2013年   1篇
  1987年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
《Free radical research》2013,47(1-5):93-98
The metabolic activation of misonidazole (MISO) and its effects on the hexose monophosphate pathway (HMP) and clonogenicity were studied in hypoxic EMT6/R0, wildtype Chinese hamster ovary (CHO) and mutant CHO cells deficient in glucose-6-phosphate dehydrogenase. In all three cell lines metabolic activation of MISO, as indicated by the binding of l4C-MISO to the acid-insoluble fraction of these cells, was increased by the presence of glucose. In EMT6/R0 cells and wildtype CHO cells, MISO caused a significant stimulation of the activity of the HMP while in the mutant CHO cells no HMP activity was measurable, even in the presence of MISO. Loss of clonogenicity induced by MISO occurred markedly earlier in EMT6/R0 cells than in the CHO cells. In the latter cells, however, only a small difference was observed between the wildtype and mutant cell line. From these results it is concluded that not only the HMP but also glycolysis and other, glucose-independent, metabolic pathways are able to provide electrons for the reductive activation of MISO and hence contribute to the hypoxic toxicity of this compound.  相似文献   
2.
The metabolic activation of misonidazole (MISO) and its effects on the hexose monophosphate pathway (HMP) and clonogenicity were studied in hypoxic EMT6/R0, wildtype Chinese hamster ovary (CHO) and mutant CHO cells deficient in glucose-6-phosphate dehydrogenase. In all three cell lines metabolic activation of MISO, as indicated by the binding of l4C-MISO to the acid-insoluble fraction of these cells, was increased by the presence of glucose. In EMT6/R0 cells and wildtype CHO cells, MISO caused a significant stimulation of the activity of the HMP while in the mutant CHO cells no HMP activity was measurable, even in the presence of MISO. Loss of clonogenicity induced by MISO occurred markedly earlier in EMT6/R0 cells than in the CHO cells. In the latter cells, however, only a small difference was observed between the wildtype and mutant cell line. From these results it is concluded that not only the HMP but also glycolysis and other, glucose-independent, metabolic pathways are able to provide electrons for the reductive activation of MISO and hence contribute to the hypoxic toxicity of this compound.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号