首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
2.
AIMS: To find the cause of misidentification of aeromonads when using the Vitek system. METHODS AND RESULTS: Two Aeromonas veronii biovar sobria isolates were misidentified as Vibrio alginolyticus by the Vitek system. Both strains' identification was confirmed by biochemical testing, API 20E/20NE kits and/or 16S RFLP analysis. Thirty-one known Aeromonas species were tested by the Vitek system using 0.45 and 0.85% saline in the suspension medium. It was not clear whether low salinity causes misidentification of Aeromonas species more frequently. CONCLUSIONS: The specified reaction time may be inappropriately short for some critical biochemical tests of some strains. An ingenious reading strategy regarding incubation time is necessary to improve identification of Aeromonas species by the Vitek system. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first report of misidentification of A. veronii biovar sobria as V. alginolyticus in the Vitek system.  相似文献   
3.
Remote cameras are a common method for surveying wildlife and recently have been promoted for implementing large‐scale regional biodiversity monitoring programs. The use of camera‐trap data depends on the correct identification of animals captured in the photographs, yet misidentification rates can be high, especially when morphologically similar species co‐occur, and this can lead to faulty inferences and hinder conservation efforts. Correct identification is dependent on diagnosable taxonomic characters, photograph quality, and the experience and training of the observer. However, keys rooted in taxonomy are rarely used for the identification of camera‐trap images and error rates are rarely assessed, even when morphologically similar species are present in the study area. We tested a method for ensuring high identification accuracy using two sympatric and morphologically similar chipmunk (Neotamias) species as a case study. We hypothesized that the identification accuracy would improve with use of the identification key and with observer training, resulting in higher levels of observer confidence and higher levels of agreement among observers. We developed an identification key and tested identification accuracy based on photographs of verified museum specimens. Our results supported predictions for each of these hypotheses. In addition, we validated the method in the field by comparing remote‐camera data with live‐trapping data. We recommend use of these methods to evaluate error rates and to exclude ambiguous records in camera‐trap datasets. We urge that ensuring correct and scientifically defensible species identifications is incumbent on researchers and should be incorporated into the camera‐trap workflow.  相似文献   
4.
The extent to which interspecific interference competition has contributed to character evolution is one of the most neglected problems in evolutionary biology. When formerly allopatric species come into secondary contact, aggressive interactions between the species can cause selection on traits that affect interspecific encounter rates (e.g. habitat preferences, activity schedules), competitor recognition (e.g. colouration, song), and fighting ability (e.g. weaponry, body size). We define agonistic character displacement (ACD) as the process of phenotypic evolution in a population caused by interference competition with one or more sympatric species and which results in shifts in traits that affect the rate, intensity or outcome of interspecific aggression. After clarifying the relationships between ACD and other evolutionary processes that may occur when species come into secondary contact, we develop an individual‐based, quantitative genetic model to examine how traits involved in competitor recognition would be expected to evolve under different secondary contact scenarios. Our simulation results show that both divergence and convergence are possible outcomes, depending on the intensity of interspecific exploitative competition, the costs associated with mutual versus unilateral recognition, and the extent of phenotypic differences prior to secondary contact. We then devise a set of eight criteria for evaluating putative examples of ACD and review the empirical literature to assess the strength of existing evidence and to identify promising avenues for future research. Our literature search revealed 33 putative examples of ACD across insects, fishes, bats, birds, lizards, and amphibians (15 divergence examples; 18 convergence examples). Only one example satisfies all eight criteria for demonstrating ACD, but most case studies satisfy four or more criteria. The current state of the evidence for ACD is similar to the state of the evidence for ecological character displacement just 10 years ago. We conclude by offering suggestions for further theoretical and empirical research on ACD.  相似文献   
5.
Japanese species of the genus Psammoecus Latreille, 1829 are taxonomically revised. Four new species, P. scitus sp. n. (misidentified with P. quadrimaculatus), P. labyrinthicus sp. n., P. boreas sp. n. and P. omotoensis sp. n. are described. Psammoecus bipunctatus (Fabricius, 1792), P. trimaculatus Motschulsky, 1858 (misidentified with P. triguttatus), P. simoni Grouvelle, 1892, P. fasciatus Reitter, 1874 and P. triguttatus are redescribed. Another described species whose distribution in Japan is questionable. P. quadrimaculatus is also redescribed. Lectotype and paralectotype of P. fasciatus and P. triguttatus are designated.  相似文献   
6.
While N-glycopeptides are relatively easy to characterize, O-glycosylation analysis is more complex. In this article, we illustrate the multiple layers of O-glycopeptide characterization that make this task so challenging. We believe our carefully curated dataset represents perhaps the largest intact human glycopeptide mixture derived from individuals, not from cell lines. The samples were collected from healthy individuals, patients with superficial or advanced bladder cancer (three of each group), and a single bladder inflammation patient. The data were scrutinized manually and interpreted using three different search engines: Byonic, Protein Prospector, and O-Pair, and the tool MS-Filter. Despite all the recent advances, reliable automatic O-glycopeptide assignment has not been solved yet. Our data reveal such diversity of site-specific O-glycosylation that has not been presented before. In addition to the potential biological implications, this dataset should be a valuable resource for software developers in the same way as some of our previously released data has been used in the development of O-Pair and O-Glycoproteome Analyzer. Based on the manual evaluation of the performance of the existing tools with our data, we lined up a series of recommendations that if implemented could significantly improve the reliability of glycopeptide assignments.  相似文献   
7.
8.
9.
10.
Recently published observations on damage to cultivated Rosa damascena in Iran were ascribed to the stem sawfly Hartigia trimaculata. Reasons are given for rejecting this identification. The insect involved was probably the stem sawfly Syrista parreyssii. No evidence exists for the presence of the North American H. trimaculata in the Old World.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号