首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  2019年   2篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Field-scale observations of two upland soils derived from contrasting granite and basalt bedrocks are presented to hypothesize that redox activity of rhizospheres exerts substantial effects on mineral dissolution and colloidal translocation in many upland soils. Rhizospheres are redox-active microsites and in the absence of O2, oxidation of rhizodeposits can be coupled by reduction of redox-active species such as Fe, a biogenic reduction that leads to Fe translocation and oxidation, accompanied by substantial proton flux. Not only do rhizogenic Fe–C redox cycles demonstrate a process by which the rhizosphere affects an environment well outside the near-root zone, but these redox processes are also hypothesized to be potent weathering systems, such that rhizogenic redox-reactions complement acid- and ligand-promoted reactions as major biogeochemical processes that control crustal weathering. The potential significance of Fe–C redox cycling is underscored by the deep and extensive rooting and mottling of upland subsoils across a wide range of plant communities, lithologies, and soil-moisture and temperature regimes.  相似文献   
2.
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.  相似文献   
3.
In forest understories, tree seedlings that germinate and emerge early in the growing season have significant survival advantages. We hypothesized that (a) early emergence is related to seed size and half-sib family, and (b) increased survival is due to reduced competition for resources. To test these hypotheses, we collected seeds of Acer rubrum from four half-sib families and planted them in the understory of a South Carolina floodplain forest. In one experiment, date of emergence was not related to seed size or half-sib family. However, our method of seed collection may have underestimated variability among half-sib families. In a second experiment, seeds were spread onto 20 understory plots, half of which were trenched to reduce root competition with overstory trees. One-year survival and biomass were greater for early- than for later-emerging cohorts. Trenching changed biomass distribution among aboveground parts and may have increased total biomass, but had essentially no impact on survival or root mass. Variation in plot flooding resulted in large differences in timing of emergence, survival, and biomass. For Acer rubrum, the survival advantage accorded by early emergence may be more related to flooding, light conditions, and genetic heterogeneity than to seed size or avoidance of root competition.  相似文献   
4.
Aim The impact of microscale frost disturbance on vegetation colonization and successionary trends was examined within patterned ground features of Little Ice Age chronosequences. The goal was to investigate and compare vegetation response to micro‐site frost disturbance with that of previous studies done at a coarser landscape scale. Location The study sites occur on Little Ice Age glacier forelands within Jotunheimen, Norway (61°–62° N). The forelands of the glaciers Slettmarkbreen, Styggedalsbreen and Vestre Memurubreen have been well studied providing chronological controls for landscape studies. Sorted patterned ground features are found within the chronosequences, typically declining with frost intensity and disturbance with increasing terrain age. Methods Micro‐plots (8.3 × 8.3 cm) were placed at the inner borders and centres of patterned ground features. Species were identified and per cent species cover and per cent cover of life‐form category were noted. Nonparametric Kruskal–Wallis and Mann–Whitney U‐tests were used to test for differences between percent cover of life‐form categories within patterned ground features as well as to identify thresholds of successional change across the chronosequences. Results Significant relationships between life‐from groups and patterned ground positions of varying ages were deduced using nonparametric statistics. Findings were then used to discuss trends of succession within patterned ground features and across the chronosequences. Vegetation establishment occurs at the border positions of young (< 30 years) patterned ground features. With time and distance from the ice margin, vegetation encroaches inwards toward the disturbed centres. Succession within patterned ground exhibits several stages: (1) bryophytes/crusts and lichens, (2) grasses/sedges and (3) woody shrubs. The occurrence of forbs was sporadic and generally non‐significant. Main conclusions Frost disturbance in patterned ground appears to delay successional trends of vegetation communities when compared with previous studies on ‘stable’ terrain, producing micro‐site lag effects. These small patches of disturbed ground are therefore important regarding vegetation assemblages across the landscape and are unlikely to be detected at the landscape scale.  相似文献   
5.
6.
On Mount Komas volcanically devastated summit six common plant species colonized 12 microsite types differentially. Flat sites covered 65%, rills and gullies 16% and biotic sites 13% of the study area. Most species preferred sites near rocks and avoided flat and biotic microsites. Polygonum and Salix preferred gully bottoms and edges. Polygonum and Salix seedlings avoided flat areas and Polygonum seedlings strongly colonized gullies. Carex oxyandra seedlings preferred Salix patches. The distributions of seedlings and adult plants were correlated. Biotic microsites supported the largest Carex individuals, rills supported the largest Agrostis individuals and the largest Salix individuals were in gully bottoms and flats.  相似文献   
7.
To clarify the small-scale heterogeneity of light regimes in a rain forest, photosynthetic photon flux density (PFD) was measured at 1-min intervals during six days at 12 microsites in each of two plots, a small gap and an understory in Pasoh Forest Reserve, Peninsular Malaysia. Frequency distribution of microsite PFD was unimodal with the peak value between 16 and 32 μmol/m2/sec in the small gap, but between 8 and 16 μmol/m2/sec in the understory. In the small gap, PFD was more variable among microsites; total daily PFD and daily sunfleck PFD exceeding 10 μmol/ m2/sec tended to be higher (P <0.05; t-test) compared to those in the understory. Sunfleck PFD exceeding 50 μmol/ m2/sec, however, showed no difference between the two plots. Diffuse PFD transmittance, defined as the ratio of PFD in the forest to that measured at 43 m above ground during the periods 0800-0810 and 1750-1800 h, was significantly higher in the small gap than in the understory plot. Diffuse PFD transmittance was also positively correlated with microsite total daily PFD. To examine the effects of the subtle heterogeneity of light regimes on leaf carbon gain, we simulated carbon gain by sun and shade leaves in a typical shade-tolerant species, Brosimum aticastrum Sw. (Moraceae). Despite the similarity in total daily PFD, total daily carbon gain was considerably higher in the gap than in the understory for both sun and shade leaves. This study suggests that frequency distribution of PFD is critical in describing microsite PFD regimes and determining leaf carbon gain in the tropical forest floor.  相似文献   
8.
Post-dispersal seed predation is only one of many factors underlying plant demography and evolution. Nevertheless, the generalist feeding habits of many post-dispersal seed predators and the limited ability of plants either to compensate for or to respond to post-dispersal seed losses directly suggest that post-dispersal seed predation may have a considerable impact on plant populations. Seed predators probably have little direct influence on the demography of plants that regenerate exclusively by vegetative means or are buffered by a large active seed bank, but such species are only a minority in most plant communities.In general, ants are significant post-dispersal seed predators in arid and semi-arid ecosystems while they act mainly as seed dispersers rather than as predators in temperate ecosystems. Although studies have probably underestimated the importance of invertebrates and birds as seed predators, rodents appear to have greater potential to influence seed dynamics, and are particularly important in temperate ecosystems. For example, production of mast seed crops is more effective at satiating specialist invertebrate seed predators than generalist vertebrates, and recruitment may be limited by post-dispersal seed predation even during mast years.Both spatial variation in post-dispersal seed predation and differences in predation between species are important elements which facilitate the coexistence of different plant species. Where microsites are limiting, selective post-dispersal seed predators can influence pre-emptive competition for these microsites. Seed size determines the extent of density-dependent predation and the exploitation of buried seed. This suggests that post-dispersal seed predators may also play a role in the evolution of seed characteristics. However, conclusions regarding the ecological and evolutionary impact of post-dispersal seed predators will remain speculative without a more substantial empirical base.  相似文献   
9.
Summary Experimental translocations of three endangered plants undertaken in South Australia confirmed the impact of specific factors thought to affect the survival and establishment of seedlings of each species. A trial involving Prostanthera eurybioides planted into several different microsites, found microsite to be a critical determinant of survival and growth. Herbivore grazing and weed competition adversely affected survival and growth of Acacia cretacea and Acacia whibleyana translocants, respectively. While these findings may not necessarily extrapolate to all species, common sense suggests that these three factors should be important considerations when planning other plant translocations. For example, attention needs to be given to the exact placement of individuals in relation to suitable edaphic, biotic and climatic factors around the receptor site. Where weeds threaten the population, they need to be controlled either before or at the time of planting. Furthermore, protection of new plantings from herbivores is likely to be crucial, particularly during the first few months after planting.  相似文献   
10.
The significance of biodiversity to biogeochemical cycling is viewed most directly through the specific biogeochemical transformations that organisms perform. Although functional diversity in soils can be great, it is exceeded to a high degree by the richness of soil species. It is generally inferred from this richness that soil systems have a high level of functional redundancy. As such, indices of species richness probably contribute little to understanding the functioning of soil ecosystems. Another approach stresses the value of identifying keystone organisms, that is those that play an exceptionally important role in determining the structure and function of ecosystems. Both views tend to ignore the importance of biodiversity in maintaining the numerous and complex interactions among organisms in soils and their contributions to biogeochemical cycling. We describe some of those interactions and their importance to ecosystem function.Soil organisms alter the physical, chemical and biological properties of soils in innumerable ways. The composition and structure of biotic communities at one hierarchical level can influence the spatial heterogeneity of resource and refuge patches at other hierarchical levels. This spatial heterogeneity is supported by a number of biologically relevant spheres of influence that include the detritusphere, the drilosphere, the porosphere, the aggregatusphere and the rhizosphere. Each has fairly distinct properties that operate at different spatial scales. We discuss how these properties may function in regulating the interactions among organisms and the biogeochemical processes that they mediate. It is through the formation of a spatially and temporally heterogeneous structure that biodiversity may contribute most significantly to the functioning of soil ecosystems. Real advances in understanding the significance of biodiversity to biogeochemical cycling will come from taking a broader view of biodiversity. Such a view will necessarily encompass many levels of resolution including: 1) the importance of biodiversity to specific biogenic transformations, 2) the complexity and specificity of biotic interactions in soils that regulate biogeochemical cycling, and 3) how biodiversity may operate at different hierarchically arranged spatial and temporal scales to influence the structure and function of ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号