首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   7篇
  2023年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
Frequently, Pleistocene climatic cycling has been found to be the diver of genetic structuring in populations, even in areas that did not have continental ice sheets, such as on the Qinghai‐Tibetan Plateau (QTP). Typically, species distributed on the plateau have been hypothesized to re‐treat to south‐eastern refugia, especially during the Last Glacial Maximum (LGM). We evaluated sequence variation in the mitochondrial DNA gene Cytb and the nuclear DNA gene RAG‐1 in Rana kukunoris, a species endemic to the QTP. Two major lineages, N and S, were identified, and lineage N was further subdivided into N1 and N2. The geographical distribution and genealogical divergences supported the hypothesis of multiple refugia. However, major lineages and sublineages diverged prior to the LGM. Demographical expansion was detected only in lineage S and sublineage N2. Sublineage N1 might have survived several glacial cycles in situ and did not expand after the LGM because of the absence of suitable habitat; it survived in river islands. Genetic analysis and environment modelling suggested that the north‐eastern edge of QTP contained a major refugium for R. kukunoris. From here, lineage S dispersed southwards after the LGM. Two microrefugia in northern Qilian Mountains greatly contributed to current level of intraspecific genetic diversity. These results were found to have important implications for the habitat conservation in Northwest China.  相似文献   
2.
A climatic basis for microrefugia: the influence of terrain on climate   总被引:1,自引:0,他引:1  
There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change.  相似文献   
3.
利用叶绿体DNA非基因编码区rpl20-rps12和trnL-trnF作为分子标记,对喜马拉雅-横断山区优越虎耳草13个居群151个个体进行谱系地理学研究,旨在揭示优越虎耳草现有的遗传结构及其演化历程。共检测到19个单倍型,其中63%的单倍型为居群特有单倍型。研究还发现,优越虎耳草居群总的遗传多样性较高(Ht=0.868),居群内平均遗传多样性较低(Hs=0.466)。分子变异分析(AMOVA)表明,优越虎耳草居群57.37%的遗传变异来自居群内,居群间遗传变异为42.63%。居群遗传分化系数Nst大于GstNst=0.463,Gst=0.438,P>0.05),但不显著,表明优越虎耳草在其整个分布范围内没有明显的谱系地理结构。中性检验结果表明,Tajima's D为负值(-1.348 32,P>0.05)而Fu's Fs*为正值(18.915 72,P>0.05),但均不显著,结合歧点分布分析发现该物种在整个分布范围内未经历过居群扩张。此外,在本研究中优越虎耳草遗传多样性和核苷酸多样性较高的居群及大量特有单倍型在整个分布范围内随机分布,符合"微型避难所"假说。优越虎耳草居群在冰期可能随气候波动而发生分布范围的不断变化,最终在相互隔离的"高山岛屿"中发生异域分化,导致大量特有单倍型产生。因此,推测优越虎耳草与其生境中的乔木和灌木可能具有相似的谱系地理历史,它们可为优越虎耳草提供微型避难所而使之在冰期时保留下来。  相似文献   
4.
The Balkan Peninsula is a hot spot for European herpetofaunal biodiversity and endemism. The rock climbing lizards Dalmatolacerta oxycephala and Dinarolacerta mosorensis and the ground‐dwelling Dalmatian wall lizard Podarcis melisellensis are endemic to the Western Balkans, and their ranges largely overlap. Here, we present a comparative phylogeographical study of these three species in the area of their codistribution in order to determine the level of concordance in their evolutionary patterns. Phylogenetic analyses were performed based on two mitochondrial genes (cytochrome b and 16S rRNA), and a molecular clock approach was used to date the most important events in their evolutionary histories. We also tested for correlations regarding genetic differentiation among populations and their geographical distances. For all three species, a significant correlation between genetic and geographical distances was found. Within D. oxycephala, two deeply separated clades (‘island’ and ‘mainland clade’), with further subdivision of the ‘mainland clade’ into two subclades (‘south‐eastern’ and ‘north‐western’), were found. High sequence divergences were observed between these groups. From our data, the time of separation of the two main clades of D. oxycephala can be estimated at about 5 mya and at about 0.8 mya for the two subclades of the mainland clade. Within D. mosorensis, coalescence time may be dated at about 1 mya, while D. mosorensis and D. montenegrina separated around 5 mya. The results imply the existence of complex palaeo‐biogeographical and geological factors that probably influenced the observed phylogeographical patterns in these lacertid species, and point to the presence of numerous glacial/interglacial refugia. Furthermore, the observed cryptic genetic diversity within the presently monotypic species D. oxycephala prompts for a revision of its taxonomic and conservation status.  相似文献   
5.
The role of Pleistocene climate changes in promoting evolutionary diversification in global biota is well documented, but the great majority of data regarding this subject come from North America and Europe, which were greatly affected by glaciation. The effects of Pleistocene changes on cold‐ and/or dry‐adapted species in tropical areas where glaciers were not present remain sparsely investigated. Many such species are restricted to small areas surrounded by unfavourable habitats, which may represent potential interglacial microrefugia. Here, we analysed the phylogeographic structure and diversification history of seven cactus species in the Pilosocereus aurisetus complex that are restricted to rocky areas with high diversity and endemism within the Neotropical savannas of eastern South America. We combined palaeodistributional estimates with standard phylogeographic approaches based on two chloroplast DNA regions (trnT‐trnL and trnS‐trnG), exon 1 of the nuclear gene PhyC and 10 nuclear microsatellite loci. Our analyses revealed a phylogeographic history marked by multiple levels of distributional fragmentation, isolation leading to allopatric differentiation and secondary contact among divergent lineages within the complex. Diversification and demographic events appear to have been affected by the Quaternary climatic cycles as a result of isolation in multiple patches of xerophytic vegetation. These small patches presently harbouring P. aurisetus populations seem to operate as microrefugia, both at present and during Pleistocene interglacial periods; the role of such microrefugia should be explored and analysed in greater detail.  相似文献   
6.
We highlight the importance of microrefugia in the light of population migration and genetic drift by synthesizing lessons learnt from metapopulation and palaeoecological studies. The concept of microrefugia is considered as a long‐term variant of conventional metapopulations, in which microclimatic stability supersedes gene flow in determining species survival. Not all species can maintain populations in microrefugia. Life history traits such as small body size, the capacity for asexual reproduction, and species with light genetic loads favour survival. Microrefugia will facilitate faster rates of species responses to climate change than envisioned in diffusion models, and potentially provide a means to alleviate the negative effects posed by natural or anthropogenic barriers to migration. Predictive models based on relatively coarse‐grained approaches that ignore microrefugia will lead to overestimates of extinction risk. Microrefugia should be identified and conserved, not for the species they contain, as these are likely to turn over with time, but as an important component of landscape diversity that will provide a safe haven for species not yet identified as at risk.  相似文献   
7.
Measuring levels of population genetic diversity is an important step for assessing the conservation status of rare or endangered plant species and implementing appropriate conservation strategies. Populations of Ribes multiflorum subsp. sandalioticum and R. sardoum, two endangered endemic species from Sardinia, representing the whole genus on the island, were investigated using ISSR and SSR markers to determine levels and structure of genetic variability in their natural populations. Results indicated medium to low genetic diversity at the population level: Nei's gene diversity for ISSR markers ranged from 0.0840 to 0.1316; the expected heterozygosity (HE) for SSR ranged from 0.4281 to 0.7012. In addition, only one remnant population of R. sardoum showed a high level of inbreeding, in accordance with its very small size. Regarding the structure of the six R. sandalioticum populations, both principal coordinates analysis (PCoA) and STRUCTURE analysis of ISSR and SSR data highlighted low population structure, although two populations appeared to be clearly distinct from the others. The genetic pattern of the two taxa associated with their different ecological positions indicated resilience of R. sandalioticum populations in fresh and humid habitats and uncertain future resistance for the residual R. sardoum population in xeric calcareous stands. Hence, this study highlights the importance of an integrated conservation approach (genetic plus in situ and ex situ conservation studies/measures) for activating management programmes in these endemic and threatened taxa that can be considered as crop wild relatives of cultivated Ribes species.  相似文献   
8.
The uplift of the Qinghai‐Tibetan Plateau (QTP) dramatically changed the topography and climate of Asia and affected the biodiversity of the plateau and its adjacent areas. However, the effects of the uplift on the dispersal, differentiation and adaptation of plants remain a puzzle when the date and processes of the uplift cannot be determined with certainty and the impacts of the Quaternary glaciations on plants on the QTP are unknown. To clarify the relationships among plants on the QTP with the plateau uplift and the Quaternary glaciations, the cpDNA trnT‐trnF regions of 891 individuals from 37 populations of Hippophae tibetana, endemic to the QTP, were sequenced in the present study. A total of 50 haplotypes were found and a strong phylogeographic structure was revealed (NST = 0.854, GST = 0.611, NST > GST, P < 0.01). The results show that three main lineages of the present populations of H. tibetana occupy the western, the middle, and the eastern geographical range, respectively, and their divergence time dates back to 3.15 Ma before present. Of 50 haplotypes, 33 (66%) are private haplotypes, which are restricted to single populations. These private haplotypes are scattered throughout the present geographical range of H. tibetana and originated from multiple differentiations in many lineages during more than 1.0 Ma period, strongly suggesting that multiple microrefugia of H. tibetana existed throughout the present geographical range during the last glacial maximum (LGM) and even earlier glaciations. Additionally, the average elevation of present populations is over 4500 m in the west and the equilibrium‐line of glaciers in the LGM was 500–300 m lower than present in the major interior part of the plateau suggesting that at most sites in the west, LGM microrefugia of H. tibetana may have been above 4000 m above sea level, the highest of all known refugia. Moreover, the divergence times among and within the three lineages and their distinct distributions as well as dispersal barriers support the theory of the recent and rapid uplift of the QTP. The rapid uplift of the plateau within the last 3.4 Ma and the associated environmental changes may have affected the dispersal and differentiation of H .tibetana and shaped its phylogeographic structure.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号