首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium‐carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium‐carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m2g?1), large pore volumes (1.24 cm3g?1), narrow mesopore‐size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg?1 in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore‐walls can increase the specific surface area to provide more sites for charge storage.  相似文献   
2.
Abstract

Some recent developments in the use of computational methods to predict the properties of condensed phases are discussed; the use of Gibbs ensemble Monte Carlo to predict the phase equilibria of bulk phases, the use of molecular dynamics to elucidate Atomic Force Microscopy experiments on organic films, and the use of combined Monte Carlo/molecular dynamics techniques to enable the direct prediction of particle fluxes along pressure gradients in model microporous materials.  相似文献   
3.
Abstract

Monte Carlo simulations using a Markov process corresponding to a (generalized) Grand Canonical Ensemble have been performed for a number of spherical micropores in equilibrium with dilute external bulk solutions of primitive model electrolytes. Dilute solutions of 1:1 electrolytes with a Bjerrum parameter B = 1.546 with cations three times larger than the anions have been simulated. Also, dilute solutions of 2:1 electrolytes with ions of equal size and reduced Bjerrum parameters Br = 1.546 and 3 have been simulated. The pores are primitive pores with hard walls and the same dielectric permittivity in the wall and in the pore solution. They range from a pore radius = 5 times the mean ionic diameter to 35 times this diameter, and they carry a fixed charge equal to + 5,0 and ?5 elementary charges. The fixed charge is modelled as smoothly distributed on the pore-wall interface. In addition to the electric potential of the interfacial charge and the electric potential of the spherical double layer, a potential Δ between the pore solution and the bulk solution may be deliberately added. For single pores we may take Δ = 0, but then the pore is generally not electroneutral. In a “Swiss cheese” membrane with a lot of (equally sized) pores, the membrane phase has to approach electroneutrality for growing size of the phase. This is approximated by means of a membrane generated potential Δ in each pore (from the electrostatic interactions with the other pores). The potential A so chosen to obtain electroneutrality is the GCEMC Donnan potential. These non-ideal Donnan potentials are compared to the ideal values (with activity coefficients equal to zero). From the mean occupation numbers of cations and anions in the pores, the average pore values of the mean ionic and the single ionic activity coefficients of the ions are calculated. These are very dependent on pore sizes and on the potential in the pore. The excess energy and the electrostatic Helmholtz free energy of the ions in the pores are also simulated directly. The electrostatic entropy is found as the difference.  相似文献   
4.
Septal micropores or plasmadesmal canals have been observed in two species of the lipomycetaceous genus Zygozyma. The presence of these canals is considered as further evidence for the connexion between the Lipomycetaceae and the Dipodascaceae. The genus Zygozyma has been emended.  相似文献   
5.
A cotton rat was inoculated orally with oocysts of Caryospora bigenetica from the feces of a rattlesnake. Sixteen days later the rat was euthanized, and portions of the scrotum, foot pad and muzzle were processed for histological sections and transmission electron microscopy. Sporozoites within caryocysts had typical coccidian features such as an anterior and posterior refractile body, centrally located nucleus, micronemes, rhoptries, a conoid, a micropore near the anterior refractile body, a posterior pore, amylopectin granules, lipid bodies, a Golgi-like body, a mitochondrion and subpellicular microtubules. The infected host cell was spherical and surrounded by a fibrous wall-like covering, 0.35–1.00 μm thick. This outer covering, when viewed in stained histological sections, was periodic acid-Schiff (PAS)-positive.  相似文献   
6.
Wireless photoelectrochemical (PEC) devices promise easy device fabrication as well as reduced losses. Here, the design and fabrication of a stand‐alone ion exchange material‐embedded, Si membrane‐based, photoelectrochemical cell architecture with micron‐sized pores is shown, to overcome the i) pH gradient formation due to long‐distance ion transport, ii) product crossover, and iii) parasitic light absorption by application of a patterned catalyst. The membrane‐embedded PEC cell with micropores utilizes a triple Si junction cell as the light absorber, and Pt and IrOx as electrocatalysts for the hydrogen evolution reactions and oxygen evolution reactions, respectively. The solar‐to‐hydrogen efficiency of 7% at steady‐state operation, as compared to an unpatterned ηPV of 10.8%, is mainly attributed to absorption losses by the incorporation of the micropores and catalyst microdots. The introduction of the Nafion ion exchange material ensures an intrinsically safe PEC cell, by reducing the total gas crossover to <0.1%, while without a cation exchange membrane, a crossover of >6% is observed. Only in a pure electrolyte of 1 m H2SO4, a pH gradient‐free system is observed thus completely avoiding the build‐up of a counteracting potential.  相似文献   
7.
土壤微孔对有机物吸附/解吸的影响及其表征   总被引:2,自引:0,他引:2  
土壤吸附是影响环境中有机化合物迁移、降解及生物有效性的重要过程,而微孔的存在是影响有机化合物慢吸附过程的重要因素之一,土壤孔隙结构(pore structure)及土壤微孔的研究对于理解发生在土壤中的吸附/解吸过程十分必要.综述了近年来土壤微孔对有机化合物吸附解吸行为影响的研究态势,包括土壤的孔隙结构及微孔的存在形式、微孔吸附有机化合物的吸附动力学和可能机理、土壤中微孔表征的技术方法、孔隙大小分布的计算以及对未来的研究展望,以期对土壤有机污染生物修复的深入研究提供理论依据.  相似文献   
8.
In this study, we developed bio-active molecules immobilized chitosan scaffolds with controlled pore architectures for enhanced viability of human mesenchymal stem cells (hMSCs). The decreasing in molecular weight of chitosan by ultrasonication of chitosan solution was effective in the formation of porous chitosan scaffolds, resulting in an increase of inter-connecting micropores (∼10 μm) between macropores. Using a layer-by-layer method, we then prepared heparin-coated chitosan scaffolds as depots for basic fibroblast growth factors (bFGF). Enzyme-linked immunosorbent assays confirmed that heparin-coated chitosan scaffolds could bind higher amount of bFGF (24.21 ng/mg) compared to 2.53 ng/mg of non-coated scaffold. Moreover, we were able to manipulate the release profiles of bFGF from the scaffolds for 7 days. In vitro studies showed that chitosan scaffolds induced the improved viability and proliferation of hMSCs through their synergetic effects of the inter-connecting micropores and the sustained released of bFGF. Our results suggest that bFGF immobilized chitosan scaffolds with controlled inter-connecting pores, in combination with other heparin-binding growth factors, have potential implants for controlling biological functions in regenerative medicine.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号