首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  23篇
  2023年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
1.
Osteoarthritis (OA) is a common joint disease in the middle and old age group with obvious cartilage damage, and the regeneration of cartilage is the key to alleviating or treating OA. In stem cell therapy, bone marrow stem cell (BMSC) has been confirmed to have cartilage regeneration ability. However, the role of stem cells in promoting articular cartilage regeneration is severely limited by their low homing rate. Stromal cell‐derived factor‐1α (SDF‐1α) plays a vital role in MSC migration and involves activation, mobilization, homing and retention. So, we aim to develop SDF‐1α‐loaded microbubbles MB(SDF‐1α), and to verify the migration of BMSCs with the effect of ultrasound combined with MB(SDF‐1α) in vitro and in vivo. The characteristics of microbubbles and the content of SDF‐1α were examined in vitro. To evaluate the effect of ultrasound combined with chemotactic microbubbles on stem cell migration, BMSCs were injected locally and intravenously into the knee joint of the OA model, and the markers of BMSCs in the cartilage were detected. We successfully prepared MB(SDF‐1α) through covalent bonding with impressive SDF‐1α loading efficacy loading content. In vitro study, ultrasound combined with MB(SDF‐1α) group can promote more stem cell migration with highest migrating cell counts, good cell viability and highest CXCR4 expression. In vivo experiment, more BMSCs surface markers presented in the ultrasound combined with MB(SDF‐1α) group with or without exogenous BMSCs administration. Hence, ultrasound combined with MB(SDF‐1α) could promote the homing of BMSCs to cartilage and provide a novel promising therapeutic approach for OA.  相似文献   
2.
The success of gene therapy is largely dependent onthe development of vectors or vehicles that can selectivelyand efficiently deliver a therapeutic gene to cells or targetissues with minimal toxicity. Viruses are efficient transducing vectors. However, the safety concerns regardingthe use of virus vector in human make nonviral deliverysystem an attractive focus. Nonviral vectors are particularly suitable with respect to the simplicity of use, possibility of large-scale production and lack of s…  相似文献   
3.
4.
为探讨载氢-纳米氧化铈微泡对小鼠辐射损伤的防护作用。本研究检测载氢-纳米氧化铈微泡的表征,并将60只BALB/c小鼠随机分为正常对照组、照射对照组、载氢-纳米氧化铈微泡组。小鼠经6Gy x射线一次性全身照射(剂量率2 Gy/min)。于照射后3 d和8 d处死小鼠,检测其外周血细胞数、脾脏和胸腺指数、骨髓和脾脏组织病理学变化。结果显示,照射后3 d和8 d,与正常对照组相比,载氢-纳米氧化铈微泡组和照射对照组的白细胞均明显下降,相比照射对照组,载氢-纳米氧化铈微泡组有改善(p<0.05或p<0.01);而载氢-纳米氧化铈微泡组和照射对照组的红细胞数和血红蛋白均略有下降,但差异无统计学意义。与正常对照组相比,微泡组的胸腺指数、脾脏指数均有下降,和照射对照组相比,载氢-纳米氧化铈微泡组的胸腺指数明显改善(p<0.05或p<0.01)。照射后3 d,与正常对照组相比,照射对照组的骨髓细胞较少,存在细胞碎片,载氢-纳米氧化铈微泡组骨髓细胞数量略有减少,存在细胞核松散现象。而照射后8 d,与正常对照组相比,照射对照组的骨髓细胞几乎找不到,载氢-纳米氧化铈微泡组骨髓细胞有一定数量,存在细胞凋亡现象。本研究表明,载氢-纳米氧化铈微泡通过保护造血组织、改善造血功能,对机体起到一定的辐射防护作用。  相似文献   
5.
BACKGROUND: Ultrasound/microbubble-mediated gene delivery has the potential to be targeted to tissue deep in the body by directing the ultrasound beam following vector administration. Application of this technology would be minimally invasive and benefit from the widespread clinical experience of using ultrasound and microbubble contrast agents. In this study we evaluate the targeting ability and spatial distribution of gene delivery using focused ultrasound. METHODS: Using a custom-built exposure tank, Chinese hamster ovary cells in the presence of SonoVue microbubbles and plasmid encoding beta-galactosidase were exposed to ultrasound in the focal plane of a 1 MHz transducer. Gene delivery and cell viability were subsequently assessed. Characterisation of the acoustic field and high-resolution spatial analysis of transfection were used to examine the relationship between gene delivery efficiency and acoustic pressure. RESULTS: In contrast to that seen in the homogeneous field close to the transducer face, gene delivery in the focal plane was concentrated on the ultrasound beam axis. Above a minimum peak-to-peak value of 0.1 MPa, transfection efficiency increased as acoustic pressure increased towards the focus, reaching a maximum above 1 MPa. Delivery was microbubble-dependent and cell viability was maintained. CONCLUSIONS: Gene delivery can be targeted using focused ultrasound and microbubbles. Since delivery is dependent on acoustic pressure, the degree of targeting can be determined by appropriate transducer design to modify the ultrasound field. In contrast to other physical gene delivery approaches, the non-invasive targeting ability of ultrasound makes this technology an attractive option for clinical gene therapy.  相似文献   
6.
To investigate the role of ultrasound-targeted microbubbles in the homing effect of bone marrow-derived mesenchymal stem cells (BMSCs) and in the therapeutic efficacy of BMSCs on the ischemic stroke. A middle cerebral artery occlusion (MCAO) model was induced by plug wire preparation. Seventy-two hours after MCAO, the treatment of BMSCs with ultrasound-targeted microbubble was assessed via modified neurological severity score (mNSS), infarct volumes, and cerebral edema. In addition, immunofluorescence was performed to analyze the homing effect of BMSCs with ultrasound-targeted microbubble. We find that BMSCs with ultrasound-targeted microbubble (BMMSCs with ultrasound-targeted microbubble [USMM] group) could significantly ameliorate mNSS, infarct volumes, and cerebral edema of MCAO compared with phosphate buffer saline group, BMSCs alone group (BMSC group), and BMSCs with Ultrasound group (Ultrasound group). Immunofluorescence analysis demonstrated that ultrasound-targeted microbubbles promoted the accumulation of BMSCs in rat MCAO brains. Our findings demonstrated that ultrasound-targeted microbubble could be an effective approach for the accumulation of BMSCs on ischemic stroke, and further improved the therapeutic efficacy of BMSCs on MCAO.  相似文献   
7.
Sonoporation is a promising drug delivery technique with great potential in medicine. However, its applications have been limited mostly by the lack of understanding its underlying biophysical mechanism, partly due to the inadequacy of the existing models for coupling with highly sensitive imaging techniques to directly observe the actual precursor events of cell–microbubble interaction under low intensity ultrasound. Here, we introduce a new in vitro method utilizing capillary-microgripping system and micro-transducer to achieve maximum level of experimental flexibility for capturing real time highly magnified images of cell–microbubble interaction, hitherto unseen in this context. Insonation of isolated single cells and microbubbles parallel with high speed microphotography and fluorescence microscopy allowed us to identify dynamic responses of cell-membrane/microbubble in correlation with sonoporation. Our results showed that bubble motion and linear oscillation in close contact with the cell membrane can cause local deformation and transient porosity in the cell membrane without rupturing it. This method can also be used as an in situ gene/drug delivery system of targeted cells for non-invasive clinical applications.  相似文献   
8.
In this study, a chemical-free cleaning method for biofilms removal is presented, which is based on intermittent low-intensity ultrasonication (US) triggered bursting of microbubbles (MB) in such a sequence that MB were continuously introduced into the reaction vessel for 15?min, while US was activated for 2?s after every 2?min of microbubbling. It was found that the fixed biomass, and the extracellular proteins and polysaccharides of 24-h old biofilms grown on a nylon membrane surface were reduced, respectively, by 75, 79 and 72% after treatment by the US?+?MB method. Fourier transform infrared (FTIR) analysis further revealed that the chemical composition of the biofilms was not altered by the US?+?MB treatment, suggesting that biofilms were removed through physical forces due to the generation of a shock wave and a high-speed water jet through US-triggered bursting of the MB. The proposed method can be considered a chemical-free technology for biofilm removal.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号