首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4877篇
  免费   652篇
  国内免费   1621篇
  7150篇
  2024年   39篇
  2023年   227篇
  2022年   259篇
  2021年   298篇
  2020年   302篇
  2019年   329篇
  2018年   317篇
  2017年   297篇
  2016年   280篇
  2015年   251篇
  2014年   291篇
  2013年   471篇
  2012年   266篇
  2011年   294篇
  2010年   262篇
  2009年   303篇
  2008年   275篇
  2007年   306篇
  2006年   289篇
  2005年   211篇
  2004年   180篇
  2003年   153篇
  2002年   133篇
  2001年   133篇
  2000年   128篇
  1999年   90篇
  1998年   81篇
  1997年   90篇
  1996年   78篇
  1995年   71篇
  1994年   58篇
  1993年   55篇
  1992年   49篇
  1991年   46篇
  1990年   39篇
  1989年   33篇
  1988年   27篇
  1987年   16篇
  1986年   19篇
  1985年   15篇
  1984年   20篇
  1983年   7篇
  1982年   21篇
  1981年   10篇
  1980年   6篇
  1979年   10篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1973年   3篇
排序方式: 共有7150条查询结果,搜索用时 31 毫秒
1.
《植物生态学报》2016,40(8):748
Aims Grazing intensity and grazing exclusion affect ecosystem carbon cycling by changing the plant community and soil micro-environment in grassland ecosystems. The aims of this study were: 1) to determine the effects of grazing intensity and grazing exclusion on litter decomposition in the temperate grasslands of Nei Mongol; 2) to compare the difference between above-ground and below-ground litter decomposition; 3) to identify the effects of precipitation on litter production and decomposition. Methods We measured litter production, quality, decomposition rates and soil nutrient contents during the growing season in 2011 and 2012 in four plots, i.e. light grazing, heavy grazing, light grazing exclusion and heavy grazing exclusion. Quadrate surveys and litter bags were used to measure litter production and decomposition rates. All data were analyzed with ANOVA and Pearson’s correlation procedures in SPSS. Important findings Litter production and decomposition rates differed greatly among four plots. During the two years of our study, above-ground litter production and decomposition in heavy-grazing plots were faster than those in light-grazing plots. In the dry year, below-ground litter production and decomposition in light-grazing plots were faster than those in heavy-grazing plots, which is opposite to the findings in the wet year. Short-term grazing exclusion could promote litter production, and the exclusion of light-grazing could increase litter decomposition and nutrient cycling. In contrast, heavy-grazing exclusion decreased litter decomposition. Thus, grazing exclusion is beneficial to the restoration of the light-grazing grasslands, and more human management measures are needed during the restoration of heavy-grazing grasslands. Precipitation increased litter production and decomposition, and below-ground litter was more vulnerable to the inter-annual change of precipitation than above-ground litter. Compared to the light-grazing grasslands, heavy-grazing grasslands had higher sensitivity to precipitation. The above-ground litter decomposition was strongly positively correlated with the litter N content (R2 = 0.489, p < 0.01) and strongly negatively correlated with the soil total N content (R2 = 0.450, p < 0.01), but it was not significantly correlated with C:N and lignin:N. Below-ground litter decomposition was negatively correlated with the litter C (R2 = 0.263, p < 0.01), C:N (R2 = 0.349, p < 0.01) and cellulose content (R2 = 0.460, p < 0.01). Our results will provide a theoretical basis for ecosystem restoration and the research of carbon cycling.  相似文献   
2.
Understanding ectomycorrhizal fungal (EMF) community structure is limited by a lack of taxonomic resolution and autecological information. Rhizopogon vesiculosus and Rhizopogon vinicolor (Basidiomycota) are morphologically and genetically related species. They are dominant members of interior Douglas‐fir (Pseudotsuga menziesii var. glauca) EMF communities, but mechanisms leading to their coexistence are unknown. We investigated the microsite associations and foraging strategy of individual R. vesiculosus and R. vinicolor genets. Mycelia spatial patterns, pervasiveness and root colonization patterns of fungal genets were compared between Rhizopogon species and between xeric and mesic soil moisture regimes. Rhizopogon spp. mycelia were systematically excavated from the soil and identified using microsatellite DNA markers. Rhizopogon vesiculosus mycelia occurred at greater depth, were more spatially pervasive, and colonized more tree roots than R. vinicolor mycelia. Both species were frequently encountered in organic layers and between the interface of organic and mineral horizons. They were particularly abundant within microsites associated with soil moisture retention. The occurrence of R. vesiculosus shifted in the presence of R. vinicolor towards mineral soil horizons, where R. vinicolor was mostly absent. This suggests that competition and foraging strategy may contribute towards the vertical partitioning observed between these species. Rhizopogon vesiculosus and R. vinicolor mycelia systems occurred at greater mean depths and were more pervasive in mesic plots compared with xeric plots. The spatial continuity and number of trees colonized by genets of each species did not significantly differ between soil moisture regimes.  相似文献   
3.
Allogibberic acid (I) has been identified as the compound responsible for the inhibition of flowering, increase in frond multiplication rate and decrease in frond size produced in Lemna perpusilla 6746 by autoclaved, unbuffered aqueous solutions of gibberellic acid (VII). 13-Deoxyallogibberic acid (IV), a product of autoclaving aq. GA7 (VIII) solutions, also inhibits flowering in L. perpusilla and is about 10 times more active than allogibberic acid.  相似文献   
4.
The application of culture-dependent studies to quantify Fe-metabolizing microorganisms from the environment is a necessity, as there are so far no universal functional marker genes for application in culture-independent studies. Media composition can vary between studies, therefore, we determined the effects of three different growth media on the quantification (MPNs) and identity (via cloning and sequencing of dominant DGGE bands) of nitrate-reducing Fe(II)-oxidizers and lactate- or acetate-oxidizing Fe(III)-reducers from a lacustrine sediment: low sulphate freshwater medium (FWM), sterile filtered bicarbonate-buffered lake water (BLW) and a mixture of both (MIX). We consistently found fewer cells in the BLW than in the FWM and the MIX. The DGGE banding patterns of the microbial communities enriched in different media types clustered together according to the e? donor and acceptor couples and not according to the medium used. Thus, although the medium composition significantly influenced the quantification and thereby conclusions on the abundance and potential significance of the targeted group within the ecosystem, biodiversity assessments through enrichment cultures were less influenced by the medium, but instead were affected by the type and concentration of the e? donor/acceptor.  相似文献   
5.
Rice straw decomposition in rice-field soil   总被引:1,自引:0,他引:1  
Rice straw, buried in a rice-field during the dry season decomposed at a rate of 0.0075 day-1. Seventy five percent of the biomass, 70 percent carbon, 50 percent nitrogen and 30 percent phosphorus remained after 139 days of decomposition. Rice straw decomposition furnished 33% N and 8% P of the total nitrogen and phosphorus provided by man.  相似文献   
6.
Wilkinson 《Ecology letters》1999,2(4):207-209
The evolution of antibiotic resistance in bacteria is well known. Here I describe possible mechanisms by which an increased rate of re-colonization of vertebrate guts by microbes caused by antibiotic use could lead to selection for increased virulence in currently mutualistic or benign microbes. The importance of understanding both the source and the frequency of colonization in such mutualisms is stressed and the possible importance of pseudo-vertical transmission in the evolution of these systems is discussed. A number of areas requiring experimental investigation are identified.  相似文献   
7.
Co-cultivation of a strain of Aspergillus parasiticus, capable of making aflatoxins, with blocked mutant strains, capable of producing none or only a low level of aflatoxins, reduced the net yield of aflatoxins more than that expected based on spore recovery. Yields of aflatoxins were 8-fold less for a norsolorinic acid-producing strain, 14-fold less for an averantin-producing strain, 6-fold less for an averufin-producing strain, and 21-fold less for a versicolorin A-producing strain when co-cultured in equal amounts with a wild-type strain of Aspergillus parasiticus. Even when the wild-type strain was initially present in 100-fold excess, with two of the mutant strains, reduced aflatoxin production was still observed.  相似文献   
8.
Summary Soil temperature, moisture, and CO2 were monitored at four sites along an elevation transect in the eastern Mojave Desert from January to October, 1987. Climate appeared to be the major factor controlling CO2 partial pressures, primarily through its influence of rates of biological reactions, vegetation densities, and organic matter production. With increasing elevation, and increasing actual evapotranspiration, the organic C, plant density, and the CO2 content of the soils increased. Between January and May, soil CO2 concentrations at a given site were closely related to variations in soil temperature. In July and October, temperatures had little effect on CO2, presumably due to low soil moisture levels. Up to 75% of litter placed in the field in March was lost by October whereas, for the 3 lower elevations, less than 10% of the litter placed in the field in April was lost through decomposition processes.  相似文献   
9.
Munawar  M.  Weisse  T. 《Hydrobiologia》1989,188(1):163-174
Various components of the Microbial loop such as bacteria, heterotrophic nanoflagellates and autotrophic picoplankton were analyzed, for the first time across the Great Lakes, during a cruise in the summer of 1988. In addition, the size fractionated primary productivity using carbon-14 techniques was also determined. The statistical analysis indicated that bacteria, autotrophic picoplankton and ultraplankton/picoplankton productivity were significantly higher in Lakes Ontario and Erie than Lakes Huron and Michigan. The autotrophic picoplankton and ultraplankton/picoplankton productivity was higher in Lake Erie compared to Lake Ontario.The autotrophic picoplankton showed sensitivity to nutrients and contaminants in various types of environments. A dramatic decrease of autotrophic picoplankton in eutrophic-contaminated areas, such as Ashbridges Bay, Hamilton Harbour and western Lake Erie was observed. Conversely, in Saginaw Bay, another eutrophic environment, the autotrophic picoplankton were significantly higher than in Lake Huron. The sensitivity of autotrophic picoplankton to nutrients/contaminants might have implications to trophic interactions. Our results suggest that structural and functional characteristics of the microbial loop may be operating differently in stressed versus unstressed ecosystems. The possibility of using autotrophic picoplankton as an early warning indicator of environmental perturbation is proposed.  相似文献   
10.
The relative importance of nitrogen inputs from atmospheric deposition and biological fixation is reviewed in a number of diverse, non-agricultural terrestrial ecosystems. Bulk precipitation inputs of N (l–l2 kg N ha–1 yr–1) are the same order of magnitude as, or frequently larger than, the usual range of inputs from nonsymbiotic fixation (< 1=" –=" 5=" kg=" n=">–1 yr–1), especially in areas influenced by industrial activity. Bulk precipitation measurements may underestimate total atmospheric deposition by 30–40% because they generally do not include all forms of wet and dry deposition. Symbiotic fixation generally ranges from 10–160 kg N ha–1 yr–1) in ecosystems where N-fixing species are present during early successional stages, and may exceed the range under unusual conditions.Rates of both symbiotic and nonsymbiotic fixation appear to be greater during early successional stages of forest development, where they have major impacts on nitrogen dynamics and ecosystem productivity. Fates and impacts of these nitrogen inputs are important considerations that are inadequately understood. These input processes are highly variable in space and time, and few sites have adequate comparative information on both nitrogen deposition and fixation.
–  - more intensive studies of total atmospheric deposition, especially of dry deposition, are needed over a wide range of ecosystems;
–  - additional studies of symbiotic fixation are needed that carefully quantify variation over space and time, examine more factors regulating fixation, and focus upon the availability of N and its effects upon productivity and other nutrient cycling processes;
–  - process-level studies of associative N-fixation should be conducted over a range of ecosystems to determine the universal importance of rhizosphere fixation;
–  - further examination of the role of free-living fixation in wood decomposition and soil organic matter genesis is needed, with attention upon spatial and temporal variation; and
–  - investigations of long-term biogeochemical impacts of these inputs must be integrated with process-level studies using modern modelling techniques.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号