首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2013年   4篇
  2011年   2篇
  2008年   1篇
排序方式: 共有20条查询结果,搜索用时 421 毫秒
1.
Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.  相似文献   
2.
3.
4.
Microautophagy is originally defined as lysosomal (vacuolar) membrane dynamics to directly enwrap and transport cytosolic components into the lumen of the lytic organelle. Molecular details of microautophagy had remained unknown until genetic studies in yeast identified a set of proteins required for the process. Subsequent studies with other experimental model organisms resulted in a series of discoveries that accompanied an expansion of the definition of microautophagy to also encompass endosomal membrane dynamics. These findings, however, still impose puzzling, non‐integrated images as to the molecular mechanism of microautophagy. By reviewing recent studies on microautophagy in various experimental systems, we propose the classification of microautophagy into three types, as the basis for developing a comprehensive view of the process.  相似文献   
5.
溶酶体具有高度保守的异质性,是细胞自噬的关键细胞器。细胞质中的蛋白质和细胞器最终在溶酶体降解,故溶酶体在维持细胞结构和功能的平衡方面起着重要生理作用。通过自噬溶酶体途径,细胞可清除某些病原体并参与抗原呈递。细胞自噬与异噬经溶酶体密切联系。自噬过程中溶酶体功能障碍与某些疾病和衰老等相关。对细胞自噬的溶酶体途径及其功能意义作了概述。  相似文献   
6.
Xiao-Man Liu  Li-Lin Du 《Autophagy》2015,11(12):2381-2382
Selective autophagy transports specific cytoplasmic materials into lysosomes/vacuoles. In the case of macroautophagy the selectivity is mediated by receptors, which usually link the cargos to the machinery that sequesters them into the forming autophagosome. In our recent work, we found that fission yeast Nbr1, a homolog of the mammalian macroautophagy receptor NBR1, acts together with an unconventional autophagy-associated cargo sequestration apparatus, the endosomal sorting complexes required for transport (ESCRTs), to deliver 2 hydrolytic enzymes from the cytosol to the vacuole lumen. In this pathway, which we term the Nbr1-mediated vacuolar targeting (NVT) pathway, soluble cargos transit through the multi-vesicular body (MVB), rather than the autophagosome, on their way to the vacuole. Our findings reveal a novel mode of action of macroautophagy receptors and broaden our understanding of ESCRT-mediated autophagy.  相似文献   
7.
在生理状态下,细胞通过自噬清除衰老细胞器和异常长寿蛋白质,维持自身结构和功能的衡定,参与胚胎发育、免疫调节和延长寿命。病理状态下细胞自噬水平显著升高,以耐受饥饿、缺血和凋亡。自噬功能障碍与某些慢性感染疾病、神经变性疾病、溶酶体贮积症和肿瘤等密切相关。掌握和合理应用自噬研究技术对于提高细胞自噬研究水平有着重要意义。该文对哺乳类细胞自噬研究技术进展及其应用作了概述。  相似文献   
8.
During early embryogenesis, before the conceptus forms the placenta, maternal nutrients as well as signaling molecules must reach the embryo proper through a tightly sealed epithelial tissue, the visceral endoderm (VE). The VE serves as a signaling center for embryogenesis, where exocytic and endocytic processes integrate signal production, perception and termination. However, the endocytic process in this important tissue has not been well characterized. We show that endocytic delivery to the lysosomes occurs via RAB7-dependent microautophagy. This process is essential for early mammalian development.  相似文献   
9.
《Autophagy》2013,9(2):285-295
Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.  相似文献   
10.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号