首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   420篇
  免费   16篇
  国内免费   13篇
  449篇
  2023年   11篇
  2022年   12篇
  2021年   63篇
  2020年   71篇
  2019年   205篇
  2018年   9篇
  2017年   5篇
  2016年   5篇
  2015年   11篇
  2014年   17篇
  2013年   19篇
  2012年   9篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
排序方式: 共有449条查询结果,搜索用时 8 毫秒
1.

Objective

The decreased expression of muscle-specific microRNA-1 (miR-1) has been found in many cardiovascular diseases and is considered to contribute to heart failure (HF). Here we investigated the role of miR-1 in myocardium protection by infusion of miR-1 in a cardiac global miRNA-deficient mouse.

Methods

We generated a cardiac-selective miRNA-deficient mouse by crossing Dicerflox/flox mice with mice expressing tamoxifen-inducible Cre recombinase under the control of a mouse αMHC promoter. When Dicer gene was removed following tamoxifen injection, the mice were treated with micrONTM mmu-miR-1a-3p agomir (agomir-1). The mice were subjected to echocardiography measurement, and the heart tissue specimens were stained with hematoxylin and eosin (H&E) and Sirius red. Terminal deoxynucleotidyl transferase-mediated dUTP nickend labeling assay and Ki67 immunofluorescence were used to determine apoptosis and proliferation.

Results

Dicer deletion resulted in extensive decrease in cardiac miRNAs in the mice. In echocardiography, the mice developed rapid and dramatic left ventricular enlargement. In histology, apparent cardiomyocyte hypertrophy, myofiber disarray, ventricular fibrosis, inflammatory infiltration, and severe ventricular remodeling were exhibited. When the mice were treated with agomir-1, they did not show any significant abnormalities in heart structure and histology in response to Dicer ablation.

Conclusion

The proper expression of miRNAs plays vital roles in the maintenance of heart histology and function. Among these miRNAs, miR-1 is critical to inhibit myocyte hypertrophy and extracellular matrix deposition, thereby preventing cardiac remodeling in cardiac-selective Dicer deficient mice.  相似文献   
2.
Infection-associated inflammation and coagulation are critical pathologies in sepsis-induced acute lung injury (ALI). This study aimed to investigate the effects of microRNA-363-3p (miR-363-3p) on sepsis-induced ALI and explore the underlying mechanisms. A cecal ligation and puncture-induced septic mouse model was established. The results of this study suggested that miR-363-3p was highly expressed in lung tissues of septic mice. Knockdown of miR-363-3p attenuated sepsis-induced histopathological damage, the inflammation response and oxidative stress in lung tissues. Furthermore, knockdown of miR-363-3p reduced the formation of platelet-derived microparticles and thrombin generation in blood samples of septic mice. Downregulation of miR-363-3p suppressed sphingosine-1-phosphate receptor 1 (S1PR1) expression in lung tissues and subsequently inactivated the nuclear factor kappa-B ligand (NF-κB) signaling. A luciferase reporter assay confirmed that miR-363-3p directly targeted the 3’-untranslated region of the mouse S1pr1 mRNA. Collectively, our study suggests that inactivation of NF-κB signaling is involved in the miR-363-3p/S1PR1 axis-mediated protective effect on septic ALI.  相似文献   
3.
目的:构建针对小鼠microRNA-29b过表达的慢病毒载体,研究其在小鼠神经元GT1-7细胞系中的生物学特性。方法:化学合成两条寡聚核苷酸单链,通过搭桥互补延伸成DNA双链,形成miR-29b的前体结构,将酶切后的慢病毒载体FUGW通过同源重组的方法与miR-29b的前体结构进行连接,构建相应microRNA-29b过表达慢病毒载体,并包装成病毒颗粒后转染小鼠神经元细胞系GT1-7,通过博来霉素药物筛选获得稳转株,RT-PCR检测相关基因在mRNA转录水平上表达量情况。结果:测序图谱证实重组慢病毒表达质粒f-F-miR-29b构建成功,GT1-7细胞稳转株中,miR-29b的表达量与对照组相比提高了约28倍,其靶基因DCX,Vdac1,Pten的表达量有所抑制,性发育相关基因LH-β,kiss-1,Inshulin,IGF-I,GPR54,GnRH,leptin-R没有明显变化。结论:利用慢病毒筛选的方法,成功在小鼠神经元GT1-7细胞中获得microRNA-29b过表达稳转株,为以后microRNA-29b的生物学特性的研究奠定了基础。  相似文献   
4.
目的:探讨micro RNA-21在卵巢癌病灶转移过程中的作用及其机制。方法:选取本院2016年6月-2018年5月收治的138例卵巢癌患者,其中63例出现结直肠转移,75例未发现有转移。q RT-PCR分别检测两组患者肿瘤组织、癌旁组织和正常组织中micro RNA-21的表达;Western blot检测两组患者肿瘤组织中PGDH、PGE2、Twist表达。通过转染过表达载has-micro RNA-21上调A2780细胞中micro RNA-21的表达,采用平板克隆实验检测细胞克隆形成能力,Trans-well细胞迁移实验和侵袭实验分别检测细胞迁移和侵袭能力。Western blot检测PGDH、PGE2、Twist蛋白表达。结果:卵巢癌转移组肿瘤组织中micro RNA-21表达高于未转移组、癌旁组织和正常卵巢组织(P0.05),卵巢癌转移组肿瘤组织中PGDH表达低于未转移组,而PGE2、Twist表达高于未转移组(P0.05)。micro RNA-21过表达的A2780细胞平板克隆形成能力、迁移和侵袭能力及上皮间质转化相关蛋白PGE2和Twist表达均明显高于阴性对照组(P0.05),而PGDH表达的表达明显降低(P0.05)。结论:micro RNA-21可能通过抑制PGDH的表达增加PGE2的表达,进而激活上皮间质转化,促进卵巢癌转移。  相似文献   
5.
本研究检测了40例食管癌组织和40例癌旁组织中的miR-21、PTEN、PI3K和AKT表达,并通过转染miR-21抑制剂来敲低人食管癌细胞系EC9706的miR-21表达,考察了miR-21对食管癌细胞生长的影响。研究发现,食管癌组织中PTEN蛋白的阳性染色评分低于癌旁组织(p<0.05),而PI3K和AKT蛋白的阳性染色评分高于癌旁组织(p<0.05)。miR-21在人食管癌组织中被上调(3.56 vs 1.21,p<0.05)。转染miR-21抑制剂导致PTEN蛋白表达升高,而PI3K和AKT蛋白表达降低(p<0.05)。转染miR-21抑制剂抑制了EC9706细胞的增殖和迁移,但促进了细胞凋亡(p<0.05)。miR-21的上调可通过激活PTEN/PI3K/AKT信号通路来促进食道癌细胞的增殖和迁移,并抑制细胞凋亡。  相似文献   
6.
Impaired angiogenesis in scleroderma (SSc) is a critical component of SSc pathology. MicroRNA-126 (miR-126) is expressed in endothelial cells (MVECs) where it regulates VEGF responses by repressing the negative regulators of VEGF, including the sprouty-related protein-1 (SPRED1), and phosphoinositide-3 kinase regulatory subunit 2 (PIK3R2). MVECs were isolated from SSc skin and matched subjects (n = 6). MiR-126 expression was measured by qPCR and in situ hybridization. Matrigel-based tube assembly was used to test angiogenesis. MiR-126 expression was inhibited by hsa-miR-126 inhibitor and enhanced by hsa-miR-126 Mimic. Epigenetic regulation of miR-126 expression was examined by the addition of epigenetic inhibitors (Aza and TSA) to MVECs and by bisulphite genomic sequencing of DNA methylation of the miR-126 promoter region. MiR-126 expression, as well as EGFL7 (miR-126 host gene), in SSc-MVECs and skin, was significantly down-regulated in association with increased expression of SPRED1 and PIK3R2 and diminished response to VEGF. Inhibition of miR-126 in NL-MVECs resulted in reduced angiogenic capacity, whereas overexpression of miR-126 in SSc-MVECs resulted in enhanced tube assembly. Addition of Aza and TSA normalized miR-126 and EGFL7 expression levels in SSc-MVECs. Heavy methylation in miR-126/EGFL7 gene was noted. In conclusion, these results demonstrate that the down-regulation of miR-126 results in impaired VEGF responses.  相似文献   
7.
MicroRNA-24-3p (miR-24-3p) has been implicated as a key promoter of chemotherapy resistance in numerous cancers. Meanwhile, cancer-associated fibroblasts (CAFs) can secret exosomes to transfer miRNAs, which mediate tumour development. However, little is known regarding the molecular mechanism of CAF-derived exosomal miR-24-3p in colon cancer (CC). Hence, this study intended to characterize the functional relevance of CAF-derived exosomal miR-24-3p in CC cell resistance to methotrexate (MTX). We identified differentially expressed HEPH, CDX2 and miR-24-3p in CC through bioinformatics analyses, and validated their expression in CC tissues and cells. The relationship among HEPH, CDX2 and miR-24-3p was verified using ChIP and dual-luciferase reporter gene assays. Exosomes were isolated from miR-24-3p inhibitor–treated CAFs (CAFs-exo/miR-24-3p inhibitor), which were used in combination with gain-of-function and loss-of-function experiments and MTX treatment. CCK-8, flow cytometry and colony formation assays were conducted to determine cell viability, apoptosis and colony formation, respectively. Based on the findings, CC tissues and cells presented with high expression of miR-24-3p and low expression of HEPH and CDX2. CDX2 was a target gene of miR-24-3p and could up-regulate HEPH. Under MTX treatment, overexpressed CDX2 or HEPH and down-regulated miR-24-3p reduced cell viability and colony formation and elevated cell apoptosis. Furthermore, miR-24-3p was transferred into CC cells via CAF-derived exosomes. CAF-derived exosomal miR-24-3p inhibitor diminished cell viability and colony formation and increased cell apoptosis in vitro and inhibited tumour growth in vivo under MTX treatment. Altogether, CAF-derived exosomal miR-24-3p accelerated resistance of CC cells to MTX by down-regulating CDX2/HEPH axis.  相似文献   
8.
Lung cancer is the most aggressive tumour afflicting patients on a global scale. Extracellular vesicle (EV)-delivered microRNAs (miRs) have been reported to play critical roles in cancer development. The current study aimed to investigate the role of hypoxic bone marrow mesenchymal cell (BMSC)-derived EVs containing miR-328-3p in lung cancer. miR-328-3p expression was determined in a set of lung cancer tissues by RT-qPCR. BMSCs were infected with lentivirus-mediated miR-328-3p knock-down and then cultured in normoxic or hypoxic conditions, followed by isolation of EVs. Following ectopic expression and depletion experiments in lung cancer cells, the biological functions of miR-328-3p were analysed using CCK-8 assay, flow cytometry and Transwell assay. Xenograft in nude mice was performed to test the in vivo effects of miR-328-3p delivered by hypoxic BMSC-derived EVs on tumour growth of lung cancer. Finally, the expression of circulating miR-328-3p was detected in the serum of lung cancer patients. miR-328-3p was highly expressed in EVs derived from hypoxic BMSCs. miR-328-3p was delivered to lung cancer cells by hypoxic BMSC-derived EVs, thereby promoting lung cancer cell proliferation, invasion, migration and epithelial-mesenchymal transition. miR-328-3p targeted NF2 to inactivate the Hippo pathway. Moreover, EV-delivered miR-328-3p increased tumour growth in vivo. Additionally, circulating miR-328-3p was bioactive in the serum of lung cancer patients. Taken together, our results demonstrated that hypoxic BMSC-derived EVs could deliver miR-328-3p to lung cancer cells and that miR-328-3p targets the NF2 gene, thereby inhibiting the Hippo pathway to ultimately promote the occurrence and progression of lung cancer.  相似文献   
9.
There is increasing evidence suggesting that dysregulation of certain microRNAs (miRNAs) may contribute to tumor progression and metastasis. Previous studies have shown that miR-409-3p is dysregulated in some malignancies, but its role in bladder cancer is still unknown. Here, we find that miR-409-3p is down-regulated in human bladder cancer tissues and cell lines. Enforced expression of miR-409-3p in bladder cancer cells significantly reduced their migration and invasion without affecting cell viability. Bioinformatics analysis identified the pro-metastatic gene c-Met as a potential miR-409-3p target. Further studies indicated that miR-409-3p suppressed the expression of c-Met by binding to its 3′-untranslated region. Silencing of c-Met by small interfering RNAs phenocopied the effects of miR-409-3p overexpression, whereas restoration of c-Met in bladder cancer cells bladder cancer cells overexpressing miR-409-3p, partially reversed the suppressive effects of miR-409-3p. We further showed that MMP2 and MMP9 may be downstream effector proteins of miR-409-3p. These findings indicate that miR-409-3p could be a potential tumor suppressor in bladder cancer.  相似文献   
10.
MicroRNA-132 (miR-132) has been shown to participate in many diseases. This study aimed to understand the correlation between the level of miR-132 and the severity of dementia post-ischemic stroke. An online tool ( www.mirdb.org ) was used to find the miR-132 binding site in acetylcholinesterase (ACHE) 3′-untranslated region (UTR), followed by a luciferase reporter assay to validate ACHE as a miR-132 target. A similar relationship between miR-132 and ACHE was also established in cerebrospinal fluid samples collected from human subjects. A negative correlation was established between ACHE and miR-132 by measuring the relative luciferase activity. Meanwhile, Western blot analysis and real-time polymerase chain reaction were also conducted to compare the levels of ACHE messenger RNA and protein between two groups (dementia positive, n = 26 and dementia negative, n = 26) or among cells treated with miR-132 mimics, ACHE small interfering RNA, and miR-132 inhibitors. As shown in the results, miR-132 can reduce the expression of ACHE. Further experiments were also carried out to study the effect of miR-132 and ACHE on cell viability and apoptosis, and the results demonstrated that miR-132 enhanced cell viability while suppressing apoptosis. In addition, ACHE reduced cell viability while promoting apoptosis. miR-132 targeted ACHE and suppressed its expression. Additionally, miR-132 and ACHE have been shown to affect the cell viability and apoptosis in the central nervous system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号