首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  1996年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Chenopodium album L. seedlings at the 4- and 8-leaf stage were exposed to low concentrations metribuzin [4-amino-6-(l, l-dimethyl)-3-(methylthio)-l,2,4-triazin (4 H )-one] in nutrient solution to study herbicide uptake and the effects of low-dose rates. Chlorophyll fluorescence was measured to relate the inhibition of photosynthesis to herbicide dose. The minimum rate at which metribuzin fully inhibited photosynthesis was less than 1 μM for seedlings at the 4-leaf stage of development, and between 1 and 5 μM for the 8-leaf stage seedlings. With isolated chloroplasts, experiments were conducted to establish the relationship between the amount of herbicide molecules bound to each chloroplast and the inhibition of photosynthesis. From the dose-response curves obtained it was calculated that photosynthesis was fully inhibited when 7.5 105 molecules metribuzin were bound to each chloroplast. This amount of binding was used to estimate minimum-lethal dose rates of metribuzin required for seedlings differing in fresh weight of leaves and amounts of chloroplasts present. It is suggested that prediction of a low dose herbicide effect from studies on binding of photosystem-II inhibitors in combination with chlorophyll fluorescence measurements may lead to the development of a new weed management strategy.  相似文献   
2.
G. Renger  R. Hagemann  G. Dohnt 《BBA》1981,636(1):17-26
The electron-transfer reactions between the plastoquinone molecules of the acceptor side of photosystem II have been inferred to be regulated by a proteinaceous component (apoenzyme), which additionally contains the receptor site for DCMU-type inhibitors (Renger, G., (1976) Biochim. Biophys. Acta 440, 287–300). In order to reveal the functional properties of this apoenzyme, the effect of procedures which modify the structure of proteins on the photosystem II electron transport have been investigated in isolated spinach chloroplasts by comparative measurements of O2 evolution and absorption changes at 334 nm induced by repetitive flash excitation and of fluorescence induction curves caused by continuous actinic light. It was found that: (1) The release of blockage of O2 evolution by the DCMU-type inhibitor SN 58132 due to mild tryptic digestion correlates kinetically with the deterioration of the binding properties. (2) Glutaraldehyde fixation of chloroplasts does not markedly modify the reoxidation kinetics of the reduced primary plastoquinone acceptor component, X320?, of photosystem II, but it greatly reduces the fluorescence yield of the antenna chlorophylls and slightly retards the ADRY effect. Furthermore, it prevents the attack of trypsin on the apoenzyme. (3) Incubation of chloroplasts in ‘low’ salt medium markedly diminishes the ability of trypsin to release the blockage of O2 evolution by SN 58132 and completely presents the effect on inhibition by DCMU. Based on these results and taking into account recent findings of other groups, the functional mechanism of the electron transport on the acceptor side of photosystem II is discussed. Assuming a tunnel mechanism, the apoprotein is inferred to act as a dynamic regulator rather than changing only the relative levels of the redox potentials of the plastoquinone molecules involved in the transfer steps. It is further concluded that salt depletion does not only cause grana unstacking and a change of the excitation energy transfer probabilities, but it additionally modifies the orientation of functional membrane proteins of photosystem II and their structural interaction within the thylakoid membrane.  相似文献   
3.
Chlamydomonas reinhardii cells were treated with 5-fluorodeoxyuridine and ethylmethanesulfonate to induce mutagenesis. The mutant cells were analyzed for resistance against metribuzin (4-amino-6-(t-butyl)-3-methylthio-1,2,4-triazine-5-one). Clones with normal growth were isolated and the mutant cells further characterized. The photosynthetic rates of the mutant cells were about 20% lower than those of wild-type cells. The mutant cells were not only resistant against metribuzin (pI50 lowered from 6.65 to 3.41) but also against bromacil, atrazine, phenisopham and tolerant against 3-(3,4-dichlorophenyl)-1,1-dimethylurea. However, the mutant was more susceptible to phenolic electron-transport inhibitors like bromonitrothymol, ioxynil and i-dinoseb. 2,4-Dinitrophenyl-2′-iodo-3′-methyl-4′-nitro-6′-isopropyl phenyl ether inhibited the wild-type thylakoids more than the mutant. The analysis of the electron transport with artificial electron donors and acceptors showed that only Photosystem II was affected by the mutation and not Photosystem I. Binding experiments with isolated thylakoids of resistant and susceptible cells using [14C]metribuzin and [3H]-i-dinoseb revealed that metribuzin did not bind specifically to the thylakoids of the mutant cells, but that i-dinoseb did bind to the thylakoids of the mutant, and even better than to the thylakoids of the wild-type cells. Fluorescence studies confirmed these results.  相似文献   
4.
Two field experiments were conducted in two locations to determine the effects of the nematicides aldicarb, phenamiphos, and ethoprop and/or the herbicides alachlor, linuron, or metribuzin on the population dynamics of Heterodera glycines and soybean growth and yield. Population densities of H. glycines were greater, at some time during the growing season, in several treatments with alachlor alone and in combination with nematicides. Numbers of H. glycines at harvest were greater in plots treated with aldicarb than in those treated with ethoprop or phenamiphos. The numbers in aldicarb treated plots were generally reduced when plots also received a herbicide. Soybean yields were negatively correlated with numbers of H. glycines eggs and juveniles in early to mid season but positively correlated with late season population densities.  相似文献   
5.
W. Tischer  H. Strotmann 《BBA》1977,460(1):113-125
The binding of radioactively labelled atrazin, metribuzin and phenmedipham by broken chloroplasts was studied. From the double-reciprocal plots (bound vs. free inhibitors) a high affinity binding reaction is graphically isolated which is related to the inhibition of photosynthetic electron transport. It is concluded that the specific binding sites correspond to the electron carrier molecules which are attacked by the inhibitors. The relative concentration of specific binding sites is 1 per 300–500 chlorophyll molecules.The binding of the labelled substances is competitively inhibited by each of the indicated unlabelled substances, by DCMU and by several pyridazinone derivatives. These results suggest that triazines, triazinones, pyridazinones, biscarbamates and phenylureas interfere with the same electron carrier of the photosynthetic electron transport chain, according to the same molecular mechanism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号