首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   13篇
  国内免费   26篇
  2023年   6篇
  2022年   7篇
  2021年   7篇
  2020年   10篇
  2019年   10篇
  2018年   8篇
  2017年   13篇
  2016年   5篇
  2015年   7篇
  2014年   6篇
  2013年   18篇
  2012年   8篇
  2011年   19篇
  2010年   4篇
  2009年   15篇
  2008年   16篇
  2007年   14篇
  2006年   12篇
  2005年   10篇
  2004年   11篇
  2003年   8篇
  2002年   11篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有279条查询结果,搜索用时 468 毫秒
1.
Concentrated cell suspensions of methanogenic bacteria reductively dechlorinated 1,2-dichloroethane via two reaction-mechanisms: a dihalo-elimination yielding ethylene and two hydrogenolysis reactions yielding chloroethane and ethane, consecutively. The transformation of chloroethane to ethane was inhibited by 1,2-dichloroethane. Stimulation of methanogenesis caused an increase in the amount of dechlorination products formed, whereas the opposite was found when methane formation was inhibited. Cells of Methanosarcina barkeri grown on H2/CO2 converted 1,2-dichloroethane and chloroethane at higher rates than acetate or methanol grown cells.Abbreviations BrES 2-bromoethanesulfonic acid - CA chloroethane - 1,2-DCA 1,2-dichloroethane - F430 Ni(II)tetrahydro-(12, 13)-corphin with an uroporphinoid (III) ligand skeleton  相似文献   
2.
It has been assumed that the feeding habits of vertebrates predispose the variety of intestinal differentiations and the composition of the microbial biota living in their intestinal tracts. Consequently, the presence of methanogenic bacteria in the various differentiations of the large intestine and the foregut of herbivorous vertebrates had been attributed primarily to the existence of anaerobic habitats and the availability of carbon dioxide and hydrogen originating from the fermentative microbial digestion of plant-based diets. However, Australian ratites, many murids, and several New World primates lack methanogens, despite their intestinal differentiations and their vegetarian feeding habits. Crocodiles, giant snakes, aardvarks, and ant-eaters on the other hand release significant amounts of methane. A determination of methane emissions by 253 vertebrate species confirmed that competence for intestinal methanogenic bacteria is shared by related species and higher taxa, irrespective of different feeding habits. In “methanogenic” branches of the evolutionary tree, a variety of differentiations of the large intestine evolved and, in some cases, differentiations of the foregut. In contrast, the lack of competence for methanogens in chiropterans/insectivores and carnivores apparently has precluded the evolution of specialized fermenting differentiations of the digestive tract. Our observations reveal that the presence of intestinal methanogenic bacteria is under phylogenetic rather than dietary control: competence for intestinal methanogenic bacteria is a plesiomorphic (primitive-shared) character among reptiles, birds, and mammals. This competence for methanogenic bacteria has been crucial for the evolution of the amniotes.  相似文献   
3.
Metabolic interactions between anaerobic bacteria in methanogenic environments   总被引:29,自引:0,他引:29  
In methanogenic environments organic matter is degraded by associations of fermenting, acetogenic and methanogenic bacteria. Hydrogen and formate consumption, and to some extent also acetate consumption, by methanogens affects the metabolism of the other bacteria. Product formation of fermenting bacteria is shifted to more oxidized products, while acetogenic bacteria are only able to metabolize compounds when methanogens consume hydrogen and formate efficiently. These types of metabolic interaction between anaerobic bacteria is due to the fact that the oxidation of NADH and FADH2 coupled to proton or bicarbonate reduction is thermodynamically only feasible at low hydrogen and formate concentrations. Syntrophic relationships which depend on interspecies hydrogen or formate transfer were described for the degradation of e.g. fatty acids, amino acids and aromatic compounds.  相似文献   
4.
Mass transfer limitation of sulfate in methanogenic aggregates   总被引:1,自引:0,他引:1  
The role of mass transfer limitation of sulfate as a factor governing the competition between sulfate reducing and methane producing bacteria in methanogenic aggregates was theoretically evaluated by the calculation of steady-state sulfate microprofiles using a reference set of parameters obtained from the literature. The shooting method was used as a numerical technique for solving the mathematical model. The effect of the parameters on mass transport limitation was tested by varying each reference value of the parameters with a factor of 3. Sulfate limitation within granules prevailed at moderate (0.1 kg m(-3)) and low sulfate concentrations in the bulk liquid, at high maximum sulfate utilization rates (3.73 x 10(-5) kg SO(4) (2-) kg(-1) VSS S(-1) or biomass concentrations (40 KG VSS m(-3)), and in large aggregates (radius of 7.5 10(-4) m). The effective diffusion coefficient of sulfate and the affinity constant were less determinative for the penetration depth of sulfate within a granule. (c) 1994 John Wiley & Sons, Inc.  相似文献   
5.
Basic issues in the culture of the extremely thermophilic archaeon, Methanothermus fervidus, have been investigated, including culture medium formulation, substrate yield and product yield coefficient, growth rate and stoichiometry, and H(2) uptake kinetics. The pH optimum for growth of this organism was estimated at 6.9. Growth medium buffered with PIPES instead of bicarbonate supported both increased growth rate and maximum biomass concentration. Substitution of titanium(III) citrate for the reducing agent sodium sulfide improved culture performance as well. However, independent adjustment of iron and nickel concentrations from 11 to 111 muM, respectively, and carbon dioxide partial pressure from 5 to 20 psia did not impact the culture of M. fervidus significantly. An elemental balance approach was utilized to aid in design of a defined medium to support growth to a target maximum biomass concentration of at least 1.0 g dry wt/L. The growth of this organism was limited by H(2) availability in this reformulated culture medium. The maximum growth rate and biomass concentration achieved in anaerobic vials with the defined medium was 0.16 h(-1) and 0.74 g dry wt/L, respectively. This maximum biomass concentration was a 72% improvement over that obtained with a literature-based defined medium. The Monod parameter, K(s), with H(2) as limiting substrate, was estimated at 1.1 +/- 0.4 psia (55 +/- 20 muM in the broth), based on a H(2) consumption study. Representative values for the substrate yield, Y(X/CO(2) ), and product yield coefficient, Y(CH(4)/) (X), were determined experimentally to be 1.78 +/- 0.04 g dry wt/mol CO(2), and 0.52 +/- 0.01 mol CH(4)/g dry wt, respectively. A bench-scale fermentation system suitable for the culture of extremely thermophilic anaerobes was designed and constructed and proved effective for the culture of M. fervidus. (c) 1993 Wiley & Sons, Inc.  相似文献   
6.
Antipathogenic potential of 38 plants was evaluated in the form of aqueous extracts against Peronoclerospora sorghi, causing downy mildew of sorghum. Conidial suspension and plant extracts were mixed individually and allowed to stand for 5 min and then used to inoculate the host by sprout-dip method. The sprouts thus inoculated were grown in pots, and the disease incidence was observed. Eight plant extracts (Cicer areatinum, Datura metel, Croton sparsiflorus, Parthenium hysterophorus, Nerium oleander, Chromolaena odorata, Duranta repens and Oxalis latifolia) at 20% concentration performed at par with chemical fungicide (Mancozeb 75%) by exhibiting total suppression of disease incidence to 0%, when compared with 64.1% of negative control. Organic management of air-borne inoculum of downy mildew of sorghum is feasible and preferable when compared with chemical control methods, considering human and environmental health concerns. The use of water extract keeps the technology simple so that it can be directly prepared and used by the farmers. Short-listing of eight most effective water extracts would help in self-reliance of farmers, reducing their dependence on commercial products.  相似文献   
7.
Using the example of Madagascar Fauna and Flora Group (MFG), we look at the factors which contribute to the successful maintenance of an international consortium dedicated to the conservation of Malagasy biodiversity. We discuss the philosophy, mission and set-up of the MFG and how, over its 25-year history, it has enabled the productive collaboration of its diverse international members to achieve the common goal of helping to protect Madagascar's unique biodiversity. We explore the benefits of pooling resources to fund a stable base of personnel and infrastructure to maximise the conservation impact of contributions from organisations that might not otherwise be able to fund viable independent programmes and consider the benefits that accrue to partners in the consortium. We highlight specific examples of plant conservation projects set up as a result of the productive working relationship between MFG and Missouri Botanical Garden to reinforce the argument that like-minded organisations working in successful partnership can far exceed the conservation capacity of individual institutions.  相似文献   
8.
Biological removal of carbon, nitrogen and sulfur is drawing increasing research interest in search for an efficient and cost-effective wastewater treatment. While extensive work on separate removal of nitrogen and sulfur is well documented, investigation on simultaneous denitrifying sulfide removal has only been reported recently. Most of the work on denitrifying sulfide removal has been focusing on bioreactor performance, loading and operating conditions. Nonetheless, underlying principles elucidating the biochemical reactions and the mechanisms of the microbial degradation are yet to be established. In addition, unstable denitrifying sulfide removal which is a major operating problem that hinders practical application of the process, is yet to be resolved. This paper provides a review on the state-of-the-art development of simultaneous biological removal of sulfur, nitrogen and carbon. Research on bioreactor operation and performance, reactor configurations, mechanisms and modeling work including the use of mass balance analysis and artificial neural networks is delineated. An in-depth discussion on the microbial community and functional consortium is also provided. Challenges and future work on simultaneous biological removal of nitrogen–sulfur–carbon are also outlined.  相似文献   
9.
The steep biogeochemical gradients near deep sea hydrothermal vents provide various niches for microbial life. Here we present biosignatures of such organisms enclosed in a modern and an ancient hydrothermal sulfide deposit (Turtle Pits, Mid-Atlantic Ridge, Recent; Yaman Kasy, Russia, Silurian). In the modern sulfide we found high amounts of specific bacterial and archaeal biomarkers with δ13C values between ?8 and ?37‰ VPDB. Our data indicate the presence of thermophilic members of the autotrophic Aquificales using the reductive tricarboxylic acid (rTCA) cycle as well as of methanogenic and chemolithoheterotrophic Archaea. In the ancient sample, most potential biomarkers of thermophiles were obscured by compounds derived from allochthonous organic matter (OM), except for an acyclic C40 biphytane and its C39 breakdown product. Both samples contained high amounts of unresolved complex mixtures (UCM) of hydrocarbons. Apparently, OM in the sulfides had to withstand high thermal stress, indicated by highly mature hopanes, steranes, and cheilanthanes with up to 41 carbon atoms.  相似文献   
10.
Chlorpyrifos is a commonly used organophosphate pesticide. Its extensive use and associated serious soil and water contamination have gained increasing environmental concern. Biodegradation is a promising way to remediate chlorpyrifos contamination. There are many reports on various chlorpyrifos degrading microorganisms, but only a few on biodegradation of chlorpyrifos by consortia. Hence, the present study attempted to assemble a novel bacterial consortium C5 for the biodegradation of chlorpyrifos. The 16S rRNA gene-based molecular analysis revealed that the bacterial consortium consisted of Staphylococcus warneri CPI 2, Pseudomonas putida CPI 9 and Stenotrophomonas maltophilia CPI 15. Optimization of chlorpyrifos degradation by the consortium C5, using a Box–Behnken design, was carried out taking into account four important variables: temperature, pH, the initial concentration of chlorpyrifos and time of incubation. C5 is capable of giving 90% degradation of chlorpyrifos (125 ppm) in 8 days of incubation under optimized conditions of pH (7) and temperature (30°C). Growth curve and degradation study under optimized conditions confirmed that consortium could improve the biodegradation potential. From these results, we conclude that the novel consortium C5 of three species can be used to eliminate chlorpyrifos from various environmental compartments and can be implemented in bioreactors in a cost-effective, safe and environmentally friendly manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号