首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8610篇
  免费   569篇
  国内免费   659篇
  2024年   20篇
  2023年   220篇
  2022年   241篇
  2021年   344篇
  2020年   319篇
  2019年   412篇
  2018年   371篇
  2017年   303篇
  2016年   347篇
  2015年   276篇
  2014年   378篇
  2013年   889篇
  2012年   260篇
  2011年   360篇
  2010年   265篇
  2009年   339篇
  2008年   325篇
  2007年   340篇
  2006年   345篇
  2005年   312篇
  2004年   261篇
  2003年   274篇
  2002年   240篇
  2001年   179篇
  2000年   151篇
  1999年   143篇
  1998年   144篇
  1997年   113篇
  1996年   130篇
  1995年   115篇
  1994年   134篇
  1993年   103篇
  1992年   95篇
  1991年   98篇
  1990年   64篇
  1989年   76篇
  1988年   54篇
  1987年   69篇
  1986年   54篇
  1985年   88篇
  1984年   100篇
  1983年   74篇
  1982年   92篇
  1981年   80篇
  1980年   65篇
  1979年   48篇
  1978年   30篇
  1977年   22篇
  1976年   27篇
  1975年   16篇
排序方式: 共有9838条查询结果,搜索用时 15 毫秒
1.
The ability to metabolically label proteins with 35S-methionine is critical for the analysis of protein synthesis and turnover. Despite the importance of this approach, however, efficient labeling of proteins in vivo is often limited by a low number of available methionine residues, or by deleterious side-effects associated with protein overexpression. To overcome these limitations, we have created a methionine-rich variant of the widely used HA tag, called HAM, for use with ectopically expressed proteins. Here we describe the development of a series of vectors, and corresponding antisera, for the expression and detection of HAM-tagged proteins in mammalian cells. We show that the HAM tag dramatically improves the sensitivity of 35S-methionine labeling, and permits the analysis of Myc oncoprotein turnover even when HAM-tagged Myc is expressed at levels comparable to that of the endogenous protein. Because of the improved sensitivity provided by the HAM tag, the vectors and antisera described here should be useful for the analysis of protein synthesis and destruction at physiological levels of protein expression.  相似文献   
2.
Chick embryo fibroblasts were treated with the monofunctional alkylating agent methylmethane sulfonate at various concentrations for 1 h at 42°C, rinsed and then incubated post-treatment at various temperatures at which the kinetics of alkali-labile bond disappearance was followed. Growth experiments showed that these cells grew similarly at temperatures of either 37°C or 42°C. Repair as assessed by removal of alkali-labile bond was also similar for postincubation in the temperature range 37–42°C for damage due to methylmethane sulfonate treatment at concentrations less than 1.5 mM. When the postincubation temperature was raised higher than 42.5–43°C, this type of repair was stopped. The normal internal body temperature of adult chickens is about 41.6°C. Hence the present finding indicates that chick cells are much more severely restricted in DNA repair at temperatures above normal than are mammalian cells, which can function in this respect for several deg. C above 37°C.  相似文献   
3.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
4.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
5.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
6.
7.
《Developmental cell》2021,56(16):2329-2347.e6
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   
8.
The antiretroviral activity of azulene derivatives was detected for the first time. A series of eighteen diversely substituted azulenes was synthesized and tested in vitro using HIV-1 based virus-like particles (VLPs) and infectious HIV-1 virus in U2OS and TZM-bl cell lines. Among the compounds tested, the 2-hydroxyazulenes demonstrated the most significant activity by inhibiting HIV-1 replication with IC50 of 2–10 and 8–20 μM for the VLPs and the infectious virus, respectively. These results indicate that azulene derivatives may be potentially useful candidates for the development of antiretroviral agents.  相似文献   
9.
《Cell reports》2020,30(3):630-641.e5
  1. Download : Download high-res image (118KB)
  2. Download : Download full-size image
  相似文献   
10.
1. Metabolism is the fundamental process that powers life. Understanding what drives metabolism is therefore critical to our understanding of the ecology and behaviour of organisms in nature. 2. Metabolic rate generally scales with body size according to a power law. However, considerable unexplained variation in metabolic rate remains after accounting for body mass with scaling functions. 3. We measured resting metabolic rates (oxygen consumption) of 227 field‐caught wolf spiders. Then, we tested for effects of body mass, species, and body condition on metabolic rate. 4. Metabolic rate scales with body mass to the 0.85 power in these wolf spiders, and there are metabolic rate differences between species. After accounting for these factors, residual variation in metabolic rate is related to spider body condition (abdomen:cephalothorax ratio). Spiders with better body condition consume more oxygen. 5. These results indicate that recent foraging history is an important determinant of metabolic rate, suggesting that although body mass and taxonomic identity are important, other factors can provide helpful insights into metabolic rate variation in ecological communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号