首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2004年   1篇
  1990年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
造血干细胞分化生成巨核细胞是一个十分复杂的过程,包括造血干细胞动员及其向巨核系祖细胞分化,巨核系祖细胞增殖、分化生成未成熟巨核细胞,巨核细胞的成熟和血小板释放等过程。研究发现,造血干细胞动员及其向各系细胞分化的大部分过程都在一种称为"龛"的结构中进行,多种龛内信号分子参与了造血干细胞的动员和分化调控。该文对造血干细胞龛内参与造血干细胞动员和分化生成巨核细胞的几种重要细胞因子及其调控作用进行综述。  相似文献   
2.
We investigated the remodeling of iron metabolism during megakaryocytic development of K562 cells. Differentiation was successfully verified by increase of the megakaryocytic marker CD61 and concomitant decrease of the erythroid marker γ-globin. The reduction of erythroid properties was accompanied by changes in the cellular iron content and in the expression of proteins regulating cellular iron homeostasis. Independent of available inorganic or transferrin-bound extracellular iron, total intracellular iron increases while the iron-to-protein ratio decreases. The iron exporter ferroportin is downregulated within 1-6 h, followed by downregulation of transferrin receptor-1 (TfR1) and ferritin heavy chain (H-ferritin) mainly after 24-48 h. The hemochromatosis protein-1, a ligand of TfR1, peaked after 24 h. All effects were independent of iron supply with the exception of H-ferritin, which was restored by excess iron. While alterations of CD61, TfR1 and ferritin expression were revoked by a protein kinase C inhibitor, downregulation of ferroportin remained unaffected.  相似文献   
3.
Platelets have an important role in the body because of their manifold functions in haemostasis, thrombosis, and inflammation. Platelets are produced by megakaryocytes (MKs) that are differentiated from haematopoietic stem cells via several consecutive stages, including MK lineage commitment, MK progenitor proliferation, MK differentiation and maturation, cell apoptosis, and platelet release. During differentiation, the cells migrate from the osteoblastic niche to the vascular niche in the bone marrow, which is accompanied by reactive oxygen species (ROS)-dependent oxidation state changes in the microenvironment, suggesting that ROS can distinctly influence platelet generation and function in a microenvironment-dependent manner. The objective of this review is to reveal the role of ROS in regulating MK proliferation, differentiation, maturation, and platelet activation, thereby providing new insight into the mechanism of platelet generation, which may lead to the development of new therapeutic agents for thrombocytopenia and/or thrombosis.  相似文献   
4.
microRNA(miRNA)是一类长约22nt(19~23nt)在进化上非常保守的非编码RNA,其能够通过降解mRNA或抑制mRNA翻译来调控蛋白表达。研究证实miRNAs在包括胚胎干细胞分化、单核细胞和巨核细胞生成等血细胞形成过程中扮演重要的角色。而由巨核细胞生成的血小板内同样存在miRNAs,并且被证实参与到血小板活化和血小板生理病理状态改变等过程中。对miRNA调控血小板生成及功能的深入研究将有利于早期诊断治疗血液系统相关疾病。  相似文献   
5.
If compared to erythroid and granulomacrophage lineages, the knowledge of the regulation of megakaryocytopoiesis has progressed slowly, and only the recent advent of specific clonogenic methods has permitted studies aimed at investigating this aspect of hematopoiesis. The analysis of Mk differentiation and platelet production is still difficult, because methods such as the 75SeM or 35S incorporation are time consuming and their sensitivity is relatively low. A number of laboratories have been able to purify, partially or to homogeneity, fractions stimulating the proliferation and differentiation of megakaryocytes. The biochemical identity between IL-3 and the active fractions found in the C.M. of some cell lines stands for a role of this hemopoietin in the regulation of megakaryocytopoiesis. However, the function of Epo and, above all, of GM-CSF cannot be ruled out, on the basis of experimental works, although only in some clinical trials GM-CSF seems to have been able to modify the platelet number. Hopefully, data on the therapeutic use of rhIL-3, and the sequentiation and identification of a molecule capable of action on the maturative compartment will shed new light on the regulation of megakaryocytopoiesis and the possibility to correct its disorders.  相似文献   
6.
Estrogen has multifunctional effects influencing growth, differentiation, and function in many tissues. High-dose estrogen has been shown to produce anabolic skeletal effects in the skeleton of postmenopausal women with increased megakaryocyte (MK) population in the bone marrow, suggesting a possible role for these cells in bone remodelling. To investigate if estrogen stimulates megakaryocytopoiesis and affects on estrogen receptor (ER) expression, CD34(+) cells were cultured for 6, 9, and 14 days plus or minus low-dose or high-dose 17 beta estradiol (E). Cells were immunolocalised for CD61, CD41, ER alpha and beta. ER mRNA expression was assessed by RT-PCR. Cells formed more CD61 positive MK colonies with low- and high-dose E treatment (P < 0.001) at 6 and 9 days. CD41 expression was increased dose-dependently in MK (3- and 5-fold P < 0.001) at 9 days. E-stimulated ER alpha expression at 6 days (P < 0.001) whilst ER beta was dose-dependently increased only at 9 days (P < 0.01). ER alpha mRNA was increased at 6 days but not at 14 days whilst ER beta mRNA expression was only increased at 14 days with E treatment. These results demonstrate that E stimulates the colony forming potential of CD34(+) cells to a more megakaryocytic phenotype in vitro. This finding together with the stimulation of ER protein and mRNA expression adds to the increasing evidence for a role for MKs in estrogen-induced bone formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号