首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2005年   1篇
  1999年   1篇
  1991年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Aim The aim of this paper is to analyse fossil charcoal deposits, largely identified to the species level and spanning a sequence from the late Holocene to < 40,000 BP , in order to reconstruct Late Quaternary vegetation and climatic patterns in the western (winter-rainfall) fynbos biome of South Africa. Location The charcoals were excavated from the Elands Bay Cave (32°19S, 18°20E) on the semiarid (200–250 mmyr?1), winter-rainfall coastline of the western fynbos biome. Methods Patterns in the charcoal data set over time were sought by manual sorting of the charcoal×sample matrix, as well as by subjecting the data to multivariate analysis. Palaeoclimatic reconstruction was attempted by comparing the climatic controls on contemporary vegetation communities that resembled the fossil assemblages. Charcoal diversity was modelled using sample age and number of charcoal fragments as explanatory variables. Results The fossil assemblages ranged from xeric communities (similar to those presently occurring at the site) during the Holocene, to more mesic thicket and fynbos vegetation in the terminal Pleistocene, to Afromontane forest and riverine woodland communities after about 18,000 BP . Diversity of the charcoal samples increased monotonically with increasing sample age. Main conclusions The results suggest that, unlike the eastern fynbos biome, which is under fundamentally different climatic controls, soil moisture conditions in the western part of the biome were higher in the Last Glacial than during the Holocene. This scenario may help to explain the higher regional richness and associated diversification in the western than eastern part of the biome.  相似文献   
2.
The monthly deposition of total nitrogen, phosphorus, potassium, calcium and magnesium via canopy throughfall, and various components of the litterfall was measured for 31 months under mature Quercus douglasii and in the bulk precipitation in the surrounding open grassland. Seasonal patterns of nutrient concentration in leaf litter, throughfall, and precipitation were also measured. Total annual subcanopy deposition exceeded open precipitation deposition by approximately 45–60x for nitrogen, 5–15x for phosphorus, 30–35x for potassium, 25–35x for calcium, and 5–10x for magnesium. Total annual subcanopy deposition was low in comparison to other oak woodland sites reported in the literature. Throughfall and leaf litter were the primary sources of nutrients and thus determined the seasonal peaks of nutrient deposition. The first autumn rains and leaf fall were associated with one peak in nutrient deposition, and throughfall during early spring leaf emergence was associated with a second peak in potassium, magnesium and phosphorus. Non-leaf plant litter (excluding acorns) provided approximately 15–35% of most nutrients, with twigs and bark depositing over 12% of the annual calcium flux in 1987–1988, and flower litter depositing over 8% of the annual nitrogen flux in 1986–1987. Acorns had high concentrations of phosphorus and nitrogen and during the mast season of 1987–1988 they contained a large proportion of the total subcanopy annual flux of these elements. With acorns excluded, total annual nutrient deposition was similar between years, but timing of nutrient deposition differed. Late summer leaf fall associated with drought, variation in precipitation, and variation in deposition of non-leaf parts were associated with seasonal differences in nutrient deposition between years.  相似文献   
3.
Aim Rainfall reliability has been neglected as a determinant of plant trait convergence and divergence in mediterranean‐climate ecosystems. This paper reports on patterns of rainfall reliability — quantified as interannual variation in monthly and seasonal rainfall, and as the frequency of individual events in terms of their size, duration and intensity — for four fire‐prone mediterranean‐climate ecosystems. Location The four mediterranean‐climate regions of the world with fire‐prone ecosystems, namely SW Cape (South Africa), SW Australia, California and the Mediterranean Basin (Andalusia, Spain). Methods Using long‐term monthly rainfall data from stations dispersed across the four regions, we computed monthly means and interannual variation for each month of the year — the latter quantified as the coefficient of variation (CV) — and divided these into winter and summer seasons. We also computed the mean number of rainfall events, the mean frequency in various categories of event duration (days), the amount of rainfall per event (mm) and the rainfall intensity per event (mm/day) per year for winter and summer seasons for a subset of the rainfall stations. Results The fraction of rain falling in summer was lowest in California (5%) and similarly low (c. 25%) in the other three regions. The hierarchy of values of coefficient of variation (CV) of monthly rainfall during the winter period was as follows: California > Andalusia >> SW Cape > SW Australia; results for summer were: California > > Andalusia >> SW Australia ~ SW Cape. SW Australian sites experienced the greatest frequency of short, small and low‐intensity rainfall events in both seasons; patterns in the SW Cape were intermediate between Australia and the two northern hemisphere sites which both received fewer, larger and more intense events. Overall, the two southern hemisphere regions (SW Australia and the SW Cape) had significantly more reliable regimes than the two northern hemisphere ones (Mediterranean Basin and California). Main conclusions These differences in rainfall reliability regimes may provide a novel perspective on the distribution of certain plant life‐history traits in mediterranean‐climate ecosystems. Less reliable regimes would select for germination and seedling survival traits that enable persistence of genets in the face of uncertain moisture conditions during the winter and spring establishment phase. Study systems that accommodate for phylogenetic constraints, namely invasive species derived from mediterranean‐climate ecosystems, as well as shared lineages, provide good opportunities to develop and test hypotheses on the implication of different rainfall reliability regimes. One of the novel implications of this study is that the distinctive trait of assemblages in the southern hemisphere regions may be a consequence not so much of their shared nutrient‐poor soils as of their similarly reliable rainfall regimes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号