首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
  2023年   9篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2006年   2篇
  2004年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Dopamine-modulated behaviors, including information processing and reward, are subject to behavioral plasticity. Disruption of these behaviors is thought to support drug addictions and psychoses. The plasticity of dopamine-mediated behaviors, for example, habituation and sensitization, are not well understood at the molecular level. We show that in the nematode Caenorhabditis elegans, a D1-like dopamine receptor gene (dop-1) modulates the plasticity of mechanosensory behaviors in which dopamine had not been implicated previously. A mutant of dop-1 displayed faster habituation to nonlocalized mechanical stimulation. This phenotype was rescued by the introduction of a wild-type copy of the gene. The dop-1 gene is expressed in mechanosensory neurons, particularly the ALM and PLM neurons. Selective expression of the dop-1 gene in mechanosensory neurons using the mec-7 promoter rescues the mechanosensory deficit in dop-1 mutant animals. The tyrosine hydroxylase-deficient C. elegans mutant (cat-2) also displays these specific behavioral deficits. These observations provide genetic evidence that dopamine signaling modulates behavioral plasticity in C. elegans.  相似文献   
6.
In most animals, multiple genes encode protein kinase C (PKC) proteins. Pharmacological studies have revealed numerous roles for this protein family, yet the in vivo roles of specific PKC proteins and the functional targets of PKC activation are poorly understood. We find that in Caenorhabditis elegans, two PKC genes, pkc-1 and tpa-1, are required for mechanosensory response; the role of the nPKCε/η ortholog, pkc-1, was examined in detail. pkc-1 function is required for response to nose touch in adult C. elegans and pkc-1 likely acts in the interneurons that regulate locomotion which are direct synaptic targets of mechanosensory neurons. Previous studies have suggested numerous possible targets of pkc-1; our analysis indicates that pkc-1 may act via the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway. We find that ERK/MAPK pathway function is required for mechanosensory response in C. elegans and that at least one component of this pathway, lin-45 Raf, acts in interneurons of the mechanosensory circuit. Genetic analysis indicates that lin-45 and pkc-1 act together to regulate nose touch response. Thus, these results functionally link two conserved signaling pathways in adult C. elegans neurons and define distinct roles for PKC genes in vivo.  相似文献   
7.
Gravitaxis in Drosophila melanogaster: a forward genetic screen   总被引:1,自引:0,他引:1  
Perception of the earth's gravitational force is essential for most forms of animal life. However, little is known of the molecular mechanisms and neuronal circuitry underlying gravitational responses. A forward genetic screen using Drosophila melanogaster that provides insight into these characteristics is described here. Vertical choice mazes combined with additional behavioral assays were used to identify mutants specifically affected in gravitaxic responses. Twenty-three mutants were selected for molecular analysis. As a result, 18 candidate genes are now implicated in the gravitaxic behavior of flies. Many of these genes have orthologs across the animal kingdom, while some are more specific to Drosophila and invertebrates. One gene (yuri) located close to a known locus for gravitaxis has been the subject of more extensive analysis including confirmation by transgenic rescue.  相似文献   
8.
Voltage‐gated calcium channels (VGCCs) serve as a critical link between electrical signaling and diverse cellular processes in neurons. We have exploited recent advances in genetically encoded calcium sensors and in culture techniques to investigate how the VGCC α1 subunit EGL‐19 and α2/δ subunit UNC‐36 affect the functional properties of C. elegans mechanosensory neurons. Using the protein‐based optical indicator cameleon, we recorded calcium transients from cultured mechanosensory neurons in response to transient depolarization. We observed that in these cultured cells, calcium transients induced by extracellular potassium were significantly reduced by a reduction‐of‐function mutation in egl‐19 and significantly reduced by L‐type calcium channel inhibitors; thus, a main source of touch neuron calcium transients appeared to be influx of extracellular calcium through L‐type channels. Transients did not depend directly on intracellular calcium stores, although a store‐independent 2‐APB and gadolinium‐sensitive calcium flux was detected. The transients were also significantly reduced by mutations in unc‐36, which encodes the main neuronal α2/δ subunit in C. elegans. Interestingly, while egl‐19 mutations resulted in similar reductions in calcium influx at all stimulus strengths, unc‐36 mutations preferentially affected responses to smaller depolarizations. These experiments suggest a central role for EGL‐19 and UNC‐36 in excitability and functional activity of the mechanosensory neurons. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   
9.
Mechanosensation in bacteria involves transducing membrane stress into an electrochemical response. In Escherichia coli and other bacteria, this function is carried out by a number of proteins including MscL, the mechanosensitive channel of large conductance. MscL is the best characterized of all mechanosensitive channels. It has been the subject of numerous structural and functional investigations. The explosion in experimental data on MscL recently culminated in the solution of the three-dimensional structure of the MscL homologue from Mycobacterium tuberculosis. In this review, much of these data are united and interpreted in terms of the newly published M. tuberculosis MscL crystal structure.  相似文献   
10.
Mechanosensation is fundamental to many tetrapod limb functions, yet it remains largely uninvestigated in the paired fins of fishes, limb homologues. Here we examine whether membranous fins may function as passive structures for touch sensation. We investigate the pectoral fins of the pictus catfish (Pimelodus pictus), a species that lives in close association with the benthic substrate and whose fins are positioned near its ventral margin. Kinematic analysis shows that the pectoral fins are held partially protracted during routine forward swimming and do not appear to generate propulsive force. Immunohistochemistry reveals that the fins are highly innervated, and we observe putative mechanoreceptors at nerve fibre endings. To test for the ability to sense mechanical perturbations, activity of fin ray nerve fibres was recorded in response to touch and bend stimulation. Both pressure and light surface brushing generated afferent nerve activity. Fin ray nerves also respond to bending of the rays. These data demonstrate for the first time that membranous fins can function as passive mechanosensors. We suggest that touch-sensitive fins may be widespread in fishes that maintain a close association with the bottom substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号