首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   43篇
  国内免费   7篇
  2024年   1篇
  2023年   14篇
  2022年   11篇
  2021年   10篇
  2020年   25篇
  2019年   29篇
  2018年   23篇
  2017年   18篇
  2016年   10篇
  2015年   11篇
  2014年   16篇
  2013年   22篇
  2012年   12篇
  2011年   8篇
  2010年   7篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有262条查询结果,搜索用时 21 毫秒
1.
The expected increase in the global demand for livestock products calls for insight in the scope to increase actual production levels across the world. This insight can be obtained by using theoretical concepts of production ecology. These concepts distinguish three production levels for livestock: potential (i.e. theoretical maximum) production, which is defined by genotype and climate only; feed-limited production, which is limited by feed quantity and quality; and actual production. The difference between the potential or limited production and the actual production is the yield gap. The objective of this paper, the first in a series of three, is to present a mechanistic, dynamic model simulating potential and feed-limited production for beef cattle, which can be used to assess yield gaps. A novelty of this model, named LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle), is the identification of the defining factors (genotype and climate) and limiting factors (feed quality and available feed quantity) for cattle growth by integrating sub-models on thermoregulation, feed intake and digestion, and energy and protein utilisation. Growth of beef cattle is simulated at the animal and herd level. The model is designed to be applicable to different beef production systems across the world. Main model inputs are breed-specific parameters, daily weather data, information about housing, and data on feed quality and quantity. Main model outputs are live weight gain, feed intake and feed efficiency (FE) at the animal and herd level. Here, the model is presented, and its use is illustrated for Charolais and Brahman × Shorthorn cattle in France and Australia. Potential and feed-limited production were assessed successfully, and we show that FE of herds is highest for breeds most adapted to the local climate conditions. LiGAPS-Beef also identified the factors that define and limit growth and production of cattle. Hence, we argue the model has scope to be used as a tool for the assessment and analysis of yield gaps in beef production systems.  相似文献   
2.
Aim  To develop a physiologically based model of the plant niche for use in species distribution modelling. Location  Europe. Methods  We link the Thornley transport resistance (TTR) model with functions which describe how the TTR’s model parameters are influenced by abiotic environmental factors. The TTR model considers how carbon and nutrient uptake, and the allocation of these assimilates, influence growth. We use indirect statistical methods to estimate the model parameters from a high resolution data set on tree distribution for 22 European tree species. Results  We infer, from distribution data and abiotic forcing data, the physiological niche dimensions of 22 European tree species. We found that the model fits were reasonable (AUC: 0.79–0.964). The projected distributions were characterized by a false positive rate of 0.19 and a false negative rate 0.12. The fitted models are used to generate projections of the environmental factors that limit the range boundaries of the study species. Main conclusions  We show that physiological models can be used to derive physiological niche dimensions from species distribution data. Future work should focus on including prior information on physiological rates into the parameter estimation process. Application of the TTR model to species distribution modelling suggests new avenues for establishing explicit links between distribution and physiology, and for generating hypotheses about how ecophysiological processes influence the distribution of plants.  相似文献   
3.
Abstract

Liquid chromatography is considered to be the bottleneck for purification of therapeutic proteins. Development and optimization of chromatography process is a cumbersome activity due to the increasing complexities in the types and content of impurities present in the high product titer cell culture harvest obtained from the upstream processing. Further, regulatory expectations are continuously rising with the recent initiatives of quality by design and process analytical technology expecting the manufacturer to have a deeper understanding of the process and the product. Mechanistic modeling is one approach to gain this deeper understanding of a process step. It involves modeling of the underlying physicochemical processes. A well calibrated model with acceptable predictability can be very effective in both process optimization and process characterization activities. In this paper we provide an overview of mechanistic modeling of liquid chromatography. We discuss the various components that such a model entails and also presents the status quo of this area.  相似文献   
4.
Site fidelity—the tendency to return to previously visited locations—is widespread across taxa. Returns may be driven by several mechanisms, including memory, habitat selection, or chance; however, pattern-based definitions group different generating mechanisms under the same label of ‘site fidelity’, often assuming memory as the main driver. We propose an operational definition of site fidelity as patterns of return that deviate from a null expectation derived from a memory-free movement model. First, using agent-based simulations, we show that without memory, intrinsic movement characteristics and extrinsic landscape characteristics are key determinants of return patterns and that even random movements may generate substantial probabilities of return. Second, we illustrate how to implement our framework empirically to establish ecologically meaningful, system-specific null expectations for site fidelity. Our approach provides a conceptual and operational framework to test hypotheses on site fidelity across systems and scales.  相似文献   
5.
6.
7.
Understanding the evolution of an epidemic is essential to implement timely and efficient preventive measures. The availability of epidemiological data at a fine spatio-temporal scale is both novel and highly useful in this regard. Indeed, having geocoded data at the case level opens the door to analyze the spread of the disease on an individual basis, allowing the detection of specific outbreaks or, in general, of some interactions between cases that are not observable if aggregated data are used. Point processes are the natural tool to perform such analyses. We analyze a spatio-temporal point pattern of Coronavirus disease 2019 (COVID-19) cases detected in Valencia (Spain) during the first 11 months (February 2020 to January 2021) of the pandemic. In particular, we propose a mechanistic spatio-temporal model for the first-order intensity function of the point process. This model includes separate estimates of the overall temporal and spatial intensities of the model and a spatio-temporal interaction term. For the latter, while similar studies have considered different forms of this term solely based on the physical distances between the events, we have also incorporated mobility data to better capture the characteristics of human populations. The results suggest that there has only been a mild level of spatio-temporal interaction between cases in the study area, which to a large extent corresponds to people living in the same residential location. Extending our proposed model to larger areas could help us gain knowledge on the propagation of COVID-19 across cities with high mobility levels.  相似文献   
8.
Despite the advantages of mathematical bioprocess modeling, successful model implementation already starts with experimental planning and accordingly can fail at this early stage. For this study, two different modeling approaches (mechanistic and hybrid) based on a four-dimensional antibody-producing CHO fed-batch process are compared. Overall, 33 experiments are performed in the fractional factorial four-dimensional design space and separated into four different complex data partitions subsequently used for model comparison and evaluation. The mechanistic model demonstrates the advantage of prior knowledge (i.e., known equations) to get informative value relatively independently of the utilized data partition. The hybrid approach displayes a higher data dependency but simultaneously yielded a higher accuracy on all data partitions. Furthermore, our results demonstrate that independent of the chosen modeling framework, a smart selection of only four initial experiments can already yield a very good representation of a full design space independent of the chosen modeling structure. Academic and industry researchers are recommended to pay more attention to experimental planning to maximize the process understanding obtained from mathematical modeling.  相似文献   
9.
10.
Richard I. Odle 《Autophagy》2020,16(4):775-776
ABSTRACT

For the last two decades there has been wide ranging debate about the status of macroautophagy during mitosis. Because metazoan cells undergo an “open” mitosis in which the nuclear envelope breaks down, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. While many studies have agreed that the number of autophagosomes is greatly reduced in cells undergoing mitosis, there has been no consensus on whether this reflects decreased autophagosome synthesis or increased autophagosome degradation. Reviewing the literature we were concerned that many studies relied too heavily on autophagy assays that were simply not appropriate for a relatively brief event such as mitosis. Using highly dynamic omegasome markers we have recently shown unequivocally that autophagosome synthesis is repressed at the onset of mitosis and is restored once cell division is complete. This is accomplished by CDK1, the master regulator of mitosis, taking over the function of MTORC1, to ensure autophagy is repressed during mitosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号