首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   5篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  1999年   1篇
  1998年   2篇
  1991年   1篇
排序方式: 共有37条查询结果,搜索用时 328 毫秒
1.
Despite the pervasiveness of spatial synchrony of population fluctuations in virtually every taxon, it remains difficult to disentangle its underlying mechanisms, such as environmental perturbations and dispersal. We used multiple regression of distance matrices (MRMs) to statistically partition the importance of several factors potentially synchronizing the dynamics of the gypsy moth, an invasive species in North America, exhibiting outbreaks that are partially synchronized over long distances (approx. 900 km). The factors considered in the MRM were synchrony in weather conditions, spatial proximity and forest-type similarity. We found that the most likely driver of outbreak synchrony is synchronous precipitation. Proximity played no apparent role in influencing outbreak synchrony after accounting for precipitation, suggesting dispersal does not drive outbreak synchrony. Because a previous modelling study indicated weather might indirectly synchronize outbreaks through synchronization of oak masting and generalist predators that feed upon acorns, we also examined the influence of weather and proximity on synchrony of acorn production. As we found for outbreak synchrony, synchrony in oak masting increased with synchrony in precipitation, though it also increased with proximity. We conclude that precipitation could synchronize gypsy moth populations directly, as in a Moran effect, or indirectly, through effects on oak masting, generalist predators or diseases.  相似文献   
2.
Global surface temperatures are expected to increase by several degrees in the next century, with potentially large but poorly understood impacts on ecological interactions. Here we propose potential effects of increased temperatures on ecologically dominant New Zealand grasses (Chionochloa spp.) that mass flower and mast seed. Twenty-two years’ data from five masting Chionochloa species in New Zealand showed that the cue for heavy flowering was unusually high temperature in the summer of the year before flowering. Attack by predispersal insect seed predators was much reduced in mast years, apparently because predator populations were satiated. Increased temperatures would greatly decrease interannual variation in Chionochloa flowering, allowing seed predator populations to increase and potentially to devastate the seed crop annually. Similar responses are likely in masting species worldwide. This previously unrecognized effect of global warming could have widespread impacts on temperate ecosystems.  相似文献   
3.
Many forest tree species produce seed (mast) crops that are consumed by a variety of wildlife species and these pulsed resources may mediate interactions among predator and prey populations. In the northern hardwood forests of New York, we investigated interactions among mast production, prey abundance, and harvests of American martens (Martes americana) and fishers (Martes pennanti) during 1988–2009. Mast production for beech (Fagus grandifolia), sugar maple (Acer saccharum), and mountain ash (Sorbus americana) was synchronous and an alternate-year pattern in production was evident for most of the time series. We documented considerable temporal variation in summer small mammal relative abundance and our numerical response models received substantial support for 5 of the 8 species, indicating lagged responses to autumn mast crops. Trap response of martens to the autumn production of beech mast and mountain ash berries was immediate and numerical responses to the relative abundance of small mammal prey occurred during the preceding summer. The age structure of the marten harvest differed based on the dominant alternate-year pattern of summer prey relative abundance and autumn mast production (χ24 = 33.06, P < 0.001). The proportion of juvenile marten in the autumn harvest was 52% and 34% following summers when small mammal relative abundance was high and low, respectively and these differences resulted in a persistent cohort effect that was apparent until age 3.5. Trap response of fishers to the autumn production of beech mast was immediate and numerical responses to the relative abundance of Sciurid prey occurred during the preceding summer. Marten and fisher harvests fluctuated similarly among New York, Maine, and New Brunswick, which may indicate regional synchronization of mast crops and responses of martens and fishers to similar prey dynamics. A better understanding of how food availability influences demographic responses and trapping vulnerability of martens and fishers would aid our ability to manage harvests of these species on a sustained yield basis. © 2011 The Wildlife Society.  相似文献   
4.
5.
选取林分较为稳定的原始阔叶红松林作为研究地点,分析近16年的红松结实动态,研究红松(Pinus koraiensis)结实的气候敏感性及其种子年机制。首先按资源限制理论分析了红松结实的资源限制性,再根据资源匹配(气候假说)理论和Nicholls关于产量研究的建议将红松种子产量分解为趋势产量和气候产量,利用红松气候产量与前3年的气象数据进行气候影响分析,并且结合前期的物候观测,找出了红松结实的气候敏感阶段及其敏感的气象指标。结果显示:(1)红松当年种子产量与去年和前年产量和呈显著负相关,二者呈指数关系,表明了红松结实中资源限制机制的存在。并且资源限制可能是球果成熟对同年其它生殖发育的单向自我营养限制关系。(2)去年与前年6月平均气温的差值(ΔT6)对当年红松种子产量具有很好的预测性。(3)花原基形成期是红松结实最为关键的气候敏感期,红松气候产量与此阶段气温和日照呈极显著负相关,与降水呈极显著正相关。(4)部分年份异常高温已经超出了花原基形成的最适温度范围,导致了红松产量的下降。(5)红松结实在生殖发育期内不同阶段都对气候变化表现敏感,红松种子年现象受到了资源限制机制和资源匹配机制的共同作用。本研究结果预示了温度升高,尤其是在气温升高过快的地区,红松结实对气候变暖具有一定的脆弱性并可能成为未来红松天然更新的重要瓶颈。  相似文献   
6.
The scaling of reproductive variability in trees   总被引:2,自引:2,他引:0  
Seed output in perennial plant populations is temporally variable and often synchronous over large regions. The similarly complex spatiotemporal dynamics of animal populations have been characterized by the power‐law scaling of the variance in population numbers with mean abundance. Here we show that a large compilation of published reproductive time series exhibits largely invariant mean–variance scaling properties across both angiosperm and conifer tree species. A simple model of seed production in tree stands shows that observed values of the scaling exponent reflect very general aspects of plant ecology and life history as well as the temporal dynamics of seed production. Together, these results suggest that the continuum of reproductive variability and synchrony observed in trees may reflect the influence of a common set of ecological processes.  相似文献   
7.
Aims Understanding fluctuations in plant reproductive investment can constitute a key challenge in ecology, conservation and management. Masting events of trees (i.e. the intermittent and synchronous production of abundant seeding material) is an extreme example of such fluctuations. Our objective was to establish the degree of spatial and temporal synchrony in common four masting tree species in boreal Finland and account for potential causal drivers of these patterns.Methods We investigated the spatial intraspecific and temporal interspecific fluctuations in annual seed production of four tree species in Finland, silver birch Betula pendula Roth, downy birch Betula pubescens Ehrh., Norway spruce Picea abies (L.) H.Karst. and rowanberry Sorbus aucuparia L. We also tested to see whether variations in seed production were linked to annual weather conditions. Seeding abundance data were derived from tens of stands per species across large spatial scales within Finland during 1979 to 2014 (for rowanberries only 1986 to 2014).Important findings All species showed spatial synchrony in seed production at scales up to 1000 km. Annual estimates of seed production were strongly correlated between species. Spring and summer temperatures explained most variation in crop sizes of tree species with 0-to 2-year time lags, whereas rainfall had relatively little influence. Warm weather during flowering (May temperature) in the flowering year (Year t) and 2 years before (t ?2) were correlated with seed production. However, high May temperatures during the previous year (t-1) adversely affected seed production. Summer temperatures in Year t-1 was positively correlated with seed production, likely because this parameter enhances the development of flower primordials, but the effect was negative with a time lag of 2 years. The negative feedback in temperature coefficients is also likely due to patterns of resource allocation, as abundant flowering and seed production in these species is thought to reduce the subsequent initiation of potential new flower buds. Since the most important weather variables also showed spatial correlation up to 1000 km, weather parameters likely explain much of the spatial and temporal synchrony in seed production of these four studied tree species.  相似文献   
8.
Many species of Dipterocarpaceae and other plant families reproduce synchronously at irregular, multi‐year intervals in Southeast Asian forests. These community‐wide general flowering events are thought to facilitate seed survival through satiation of generalist seed predators. During a general flowering event, closely related Shorea species (Dipterocarpaceae) stagger their flowering times by several weeks, which may minimize cross pollination and interspecific competition for pollinators. Generalist, pre‐dispersal seed predators might also track flowering hosts and influence predator satiation. We addressed the question of whether pre‐dispersal seed predation differed between early and late flowering Shorea species by monitoring flowering, fruiting and seed predation intensity over two general flowering events at the Pasoh Research Forest, Malaysia. Pre‐dispersal insect seed predators killed up to 63 percent of developing seeds, with Nanophyes shoreae, a weevil that feeds on immature seeds being the most important predator for all Shorea species. This weevil caused significantly greater pre‐dispersal seed predation in earlier flowering species. Long larval development time precluded oviposition by adults that emerged from the earliest flowering Shorea on the final flowering Shorea. In contrast, larvae of weevils that feed on mature seeds before seed dispersal (Alcidodes spp.), appeared in seeds of all Shorea species almost simultaneously. We conclude that general flowering events have the potential to satiate post‐dispersal seed predators and pre‐dispersal seed predators of mature fruit, but are less effective at satiating pre‐dispersal predators of immature fruit attacking early flowering species.  相似文献   
9.
Bat hibernacula with high numbers of bats can become high-risk areas, as they attract flying and non-flying predators. In order to protect hibernating bats effectively, more knowledge about mortality factors is needed. During the winters of 2003–2015, we found 214 dead bats in 12 hibernacula in The Netherlands province of Zuid-Holland. Most bat remains were found in December and January, with a second peak in April. Their remains showed a typical pattern of lesions consistent with those caused by predation by the wood mouse (Apodemus sylvaticus). Trail camera surveys showed that wood mice actively searched for bats. Predation pressure seemed to vary between winters, with a peak in the winters of 2004, 2011 and 2015. The annual mortality (relative to the maximum winter population size) caused by wood mouse predation varied between 0.1 and 8.8 %, with a maximum local effect of 83.6 %. The years with high wood mouse predation pressure were characterized by a long frost period and a low mast production of common oak in the preceding autumn. The size of a hibernaculum and the population density of its bats had an effect on predation-dependent mortality. The highest predation risk occurred near the entrance of bunkers. From these results we tentatively conclude that predation is not incidental and that wood mice actively search for and kill hibernating bats or scavenge for weakened individuals.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号