首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19664篇
  免费   1393篇
  国内免费   943篇
  2024年   19篇
  2023年   344篇
  2022年   432篇
  2021年   489篇
  2020年   519篇
  2019年   669篇
  2018年   688篇
  2017年   543篇
  2016年   571篇
  2015年   623篇
  2014年   932篇
  2013年   1546篇
  2012年   750篇
  2011年   954篇
  2010年   766篇
  2009年   954篇
  2008年   999篇
  2007年   1051篇
  2006年   1077篇
  2005年   937篇
  2004年   770篇
  2003年   691篇
  2002年   707篇
  2001年   515篇
  2000年   413篇
  1999年   418篇
  1998年   405篇
  1997年   432篇
  1996年   285篇
  1995年   332篇
  1994年   284篇
  1993年   222篇
  1992年   210篇
  1991年   157篇
  1990年   153篇
  1989年   130篇
  1988年   114篇
  1987年   100篇
  1986年   70篇
  1985年   121篇
  1984年   163篇
  1983年   101篇
  1982年   122篇
  1981年   74篇
  1980年   42篇
  1979年   37篇
  1978年   18篇
  1977年   14篇
  1976年   13篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
  1. Download : Download high-res image (208KB)
  2. Download : Download full-size image
Highlights
  • •N-glycan patterns are distinct in pediatric and adult urine.
  • •Sex differences of N-glycans are much larger in adults.
  • •Pediatric urine has almost no sex differences in N-glycan levels.
  • •In adults, the majority of N-glycans were more abundant in males.
  相似文献   
3.
4.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   
5.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
6.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
7.
Undoubtedly, metallomic approaches based on mass spectrometry have evolved into essential tools supporting the drug development of novel metal-based anticancer drugs. This article will comment on the state-of-the-art instrumentation and highlight some of the recent analytical advances beyond routine, especially focusing on the latest developments in inductively coupled plasma-mass spectrometry (ICP-MS). Mass spectrometry-based bioimaging and single-cell methods will be presented, paving the way to exciting investigations of metal-based anticancer drugs in heterogeneous and structurally, as well as functionally complex solid tumor tissues.  相似文献   
8.
Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor–related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose–response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes.  相似文献   
9.
N-糖蛋白去糖基化酶(PNGase)是一种广泛存在于真菌、植物、哺乳动物中的去糖基化酶,可以水解N-糖蛋白或 N-糖肽上天冬酰胺与寡糖链连接的化学键,并释放出完整的N-寡糖。PNGase在生物体内参与蛋白质降解、器官发育、个体生长等过程。人PNGase基因功能缺陷会导致先天性去糖基化障碍,小鼠PNGase缺陷会导致胚胎致死性,线虫PNGase缺陷使其寿命下降。本文对PNGase在不同物种的分布、蛋白质结构、酶学功能及生物学功能进行阐述,为PNGase的生理病理功能及致病机制的基础研究提供思路,为PNGase作为糖生物学工具酶或药物开发的创新应用研究奠定基础。  相似文献   
10.
The separation of peptides and proteins by reverse-phase high-performance liquid chromatography with cyanopropylsilyl and large-pore propylsilyl supports, together with aqueous trifluoroacetic acid/acetonitrile gradients, was studied. Operating parameters (trifluoroacetic acid concentration, flow rate, and gradient slope) were evaluated using different enzymatic digests of horse cytochrome c and bovine serum albumin. Peptides ranging in size from five amino acids to 68 kDa could be separated on the propylsilyl column in a single chromatographic run. The cyanopropylsilyl column is suitable as a supplement to the use of the large-pore column for medium size (5-20 amino acids) peptides. The chromatographic supports and conditions presented here offer a simple, sensitive, and rapid separation system for a wide size range of peptides and proteins. They extend the versatility of separation methodology for these molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号