首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   5篇
  国内免费   1篇
  2023年   3篇
  2020年   1篇
  2019年   1篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   10篇
  2012年   1篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1973年   3篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
1.
Summary The authors succeeded in establishing a murine model of systemic candidiasis being disseminated from the primary gastrointestinal lesions caused by oral inoculation of Candida albicans. Using this model, an attempt was made for detecting the Candida antigen by enzyme-linked immunosorbent assay using avidin-biotin (AB-ELISA) from the serum of infected mice.Gastrointestinal candidiasis was formed in all of the 20 mice treated with the drugs (antibiotics, antineoplastic agents, hydrocortisone, etc.) and inoculated orally with C. albicans. Fourteen of these mice suffered from submucosal candidiasis, and C. albicans was cultured from the visceral organs in 12 of them. The assay by AB-ELISA was able to detect 1.0 ng/ml Candida mannan in the mouse serum. The Candida antigen was detected in the sera of 11 of the 14 mice with submucosal candidiasis. However, the antigen could not be detected in the sera of the 6 mice with intramucosal candidiasis.The assay by AB-ELISA is more sensitive and specific for the diagnosis of systemic candidiasis than other serological assays.  相似文献   
2.
-Mannanase produced by Bacillus sp. W-2, isolated from decayed commercial konjak cake, was purified from the culture supernatant by (NH4)2 SO4 precipitation, adsorption to konjak gel, and column chromatography with DEAE-cellulose, Sephadex G-100 and Sephacryl S-200. Its molecular size was estimated by SDS-PAGE as 40 kDa, and by gel filtration as 36 kDa. The enzyme was most active at pH 7 and 70°C and was stable for at least 1 h between pH 5 and 10 and below 60°C. Its activity was completely inhibited by Hg2+. The enzyme hydrolysed galactomannan better than glucomannan and mainly produced mannose and mannobiose.The authors are with the Department of Bioproductive Science, Faculty of Agriculture, Utsunomiya University. Utsunomiya, Tochigi 321, Japan  相似文献   
3.
A water-soluble and neutral polysaccharide was extracted from the current pseudobulbs of Oncidium “Gower Ramsey” during the early inflorescence stage (flower stalk less than 4 cm) by hot water, precipitated with ethanol, and purified with an anion exchanger. From the data of monosaccharide composition and linkage and anomeric configuration analyses, the polysaccharide was identified as a linear β-1→4 linked mannan.  相似文献   
4.
Galactomannans comprise a β‐1,4‐mannan backbone substituted with α‐1,6‐galactosyl residues. Genes encoding the enzymes that are primarily responsible for backbone synthesis and side‐chain addition of galactomannans were previously identified and characterized. To identify additional genes involved in galactomannan biosynthesis, we previously performed deep EST profiling of fenugreek (Trigonella foenumgraecum L.) seed endosperm, which accumulates large quantities of galactomannans as a reserve carbohydrate during seed development. One of the candidate genes encodes a protein that is likely to be a glycosyltransferase. Because this protein is involved in mannan biosynthesis, we named it ‘mannan synthesis‐related’ (MSR). Here, we report the characterization of a fenugreek MSR gene (TfMSR) and its two Arabidopsis homologs, AtMSR1 and AtMSR2. TfMSR was highly and specifically expressed in the endosperm. TfMSR, AtMSR1 and AtMSR2 proteins were all determined to be localized to the Golgi by fluorescence confocal microscopy. The level of mannosyl residues in stem glucomannans decreased by approximately 40% for Arabidopsis msr1 single T‐DNA insertion mutants and by more than 50% for msr1 msr2 double mutants, but remained unchanged for msr2 single mutants. In addition, in vitro mannan synthase activity from the stems of msr1 single and msr1 msr2 double mutants also decreased. Expression of AtMSR1 or AtMSR2 in the msr1 msr2 double mutant completely or partially restored mannosyl levels. From these results, we conclude that the MSR protein is important for mannan biosynthesis, and offer some ideas about its role.  相似文献   
5.
AIM: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure. METHODS AND RESULTS: Chemical and enzymatic methods were used to determine levels of beta-1,3-glucan and 1,6-glucan, mannan and chitin of the yeast cell wall, whereas the structure/resistance of the wall was qualitatively assessed by the sensibility to the lytic action by zymolyase. It was found that the dry mass and polysaccharides content of the cell wall could vary by more than 50% with the nature of the carbon source, nitrogen limitation, pH, temperature and aeration, and with the mode of cell cultivation (shake flasks vs controlled fermentors). While no obvious correlation could be found between beta-glucan or mannan levels and the susceptibility of whole yeast cells to zymolyase, increase of beta-1,6-glucan levels, albeit modest with respect to the growth conditions investigated, and to a lesser extent that of chitin, was associated with decreased sensitivity of yeast cells to the lytic action by zymolyase. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results indicate that the cell wall structure is merely determined by cross-linking between cell wall polymers, pointed out the role of beta-1,6-glucan in this process. Hence, this study reinforces the idea that enzymes involved in these cross-linking reactions are potential targets for antifungal drugs.  相似文献   
6.
Osmotin is a plant PR-5 protein. It has a broad spectrum of antifungal activity, yet also exhibits specificity for certain fungal targets. The structural bases for this specificity remain unknown. We show here that full sensitivity of Saccharomyces cerevisiae cells to the PR-5 protein osmotin is dependent on the function of MNN2, MNN4 and MNN6. MNN2 is an alpha-1, 2-mannosyltransferase catalyzing the addition of the first mannose to the branches on the poly l,6-mannose backbone of the outer chain of cell wall N-linked mannans. MNN4 and MNN6 are required for the transfer of mannosylphosphate to cell wall mannans. Null mnn2, mnn4 or mnn6 mutants lack phosphomannans and are defective in binding osmotin to the fungal cell wall. Both antimannoprotein antibody and the cationic dye alcian blue protect cells against osmotin cytotoxicity. MNN1 is an alpha-1,3-mannosyltransferase that adds the terminal mannose to the outer chain branches of N-linked mannan, masking mannosylphosphate. Null mnn1 cells exhibit enhanced osmotin binding and sensitivity. Several cell wall mannoproteins can bind to immobilized osmotin, suggesting that their polysaccharide constituent determines osmotin binding. Our results demonstrating a causal relationship between cell surface phosphomannan and the susceptibility of a yeast strain to osmotin suggest that cell surface polysaccharides of invading pathogens control target specificity of plant PR-5 proteins.  相似文献   
7.
在光学显微镜和透射电镜下观察了魔芋(Amorphophalusconjac)球茎中甘露聚糖粒和淀粉粒的形态。两种贮藏多糖分别位于不同的细胞中。淀粉粒在造粉体内发育,以复粒存在,用魔芋球茎仔茎茎尖为材料观察显示,淀粉粒的形成早于甘露聚糖颗粒的形成。甘露聚糖粒形态多数近随圆形,一些甘露聚糖颗粒内包含了针晶体,但多数的甘露聚糖粒内部不包含针晶体,由纯净的甘露聚糖构成。  相似文献   
8.
魔芋甘露聚糖化学结构的研究   总被引:11,自引:0,他引:11  
研究了陕西花魔芋块茎中分离所得的魔芋甘露聚糖的化学结构与分子组成。经葡聚糖凝胶G-75柱层析为一组均一性多糖,气相色谱检测由甘露糖,葡萄糖组成,其克分子比Man;Glu=1.78:1,平均分子量为11×10^-5。  相似文献   
9.
The three-dimensional crystal structure of tomato (Lycopersicon esculentum) beta-mannanase 4a (LeMAN4a) has been determined to 1.5 A resolution. The enzyme adopts the (beta/alpha)(8) fold common to the members of glycohydrolase family GH5. The structure is comparable with those of the homologous Trichoderma reesei and Thermomonospora fusca beta-mannanases: There is a conserved three-stranded beta-sheet located near the N terminus that stacks against the central beta-barrel at the end opposite the active site. Three noncanonical beta-helices surround the active site. Similar helices are found in T. reesei but not T. fusca beta-mannanase. By analogy with other beta-mannanases, the catalytic acid/base residue is E204 and the nucleophile residue is E318. The active site cleft of L. esculentum beta-mannanase most closely resembles that of the T. reesei isozyme. A model of substrate binding in LeMAN4a is proposed in which the mannosyl residue occupying the -1 subsite of the enzyme adopts the (1)S(5) skew-boat conformation.  相似文献   
10.
Rheological studies have confirmed that the bacterial polysaccharide P2, a genetically modified variant of the Acetobacter xylinum polysaccharide acetan, undergoes synergistic gelation with either of the plant polysaccharides carob or konjac mannan. X-ray fibre diffraction data shows that P2 can form a 5-fold helical structure of pitch 4.7nm and an axial rise per disaccharide repeat of 0.92nm. Optical rotation data demonstrate that P2 undergoes a coil-helix transition in solution and that deacylation enhances the stability of the helical structure in solution. Studies made on mixtures prepared at different temperatures and ionic strengths suggest that denaturation of the P2 helix favours interaction and gelation. Deacetylation of P2 enhances gelation. X-ray diffraction data for oriented fibres prepared from deacetylated P2-konjac mannan mixed films reveal a 6-fold helical structure of pitch 5.54nm with an axial rise per disaccharide repeat also of 0.92nm. This mixed helix provides direct evidence for binding between the two polysaccharides. P2 contains two sites of acetylation: one on the backbone and one on the sidechain. The former site of acetylation inhibits helix formation for P2. It is suggested that this site of acetylation also inhibits formation of the mixed helix, explaining the enhanced gelation of mixtures on deacetylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号