首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
  2020年   2篇
  2015年   1篇
  2008年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Chimonanthus salicifolius, a member of the Calycanthaceae of magnoliids, is one of the most famous medicinal plants in Eastern China. Here, we report a chromosome‐level genome assembly of Csalicifolius, comprising 820.1 Mb of genomic sequence with a contig N50 of 2.3 Mb and containing 36 651 annotated protein‐coding genes. Phylogenetic analyses revealed that magnoliids were sister to the eudicots. Two rounds of ancient whole‐genome duplication were inferred in the Csalicifolious genome. One is shared by Calycanthaceae after its divergence with Lauraceae, and the other is in the ancestry of Magnoliales and Laurales. Notably, long genes with > 20 kb in length were much more prevalent in the magnoliid genomes compared with other angiosperms, which could be caused by the length expansion of introns inserted by transposon elements. Homologous genes within the flavonoid pathway for Csalicifolius were identified, and correlation of the gene expression and the contents of flavonoid metabolites revealed potential critical genes involved in flavonoids biosynthesis. This study not only provides an additional whole‐genome sequence from the magnoliids, but also opens the door to functional genomic research and molecular breeding of Csalicifolius.  相似文献   
2.
Microsporogenesis and systematics of Aristolochiaceae   总被引:1,自引:0,他引:1  
Within Aristolochiaceae, a secretory tapetum and orbicules are ubiquitous, but both simultaneous and successive types of microsporogenesis occur. Simultaneous cytokinesis is apparently plesiomorphic within the order Piperales, in which Aristolochiaceae are now placed. Successive microsporogenesis was found only in species of Aristolochia confined to a crown clade in the proposed phylogeny of this genus. In contrast to many other taxa, within Aristolochiaceae there is no strict relationship between microsporogenesis type and tetrad configuration, which is strongly influenced by spindle orientation, especially during meiosis II. There is also no direct correlation between microsporogenesis type and the aperture of mature pollen grains.  相似文献   
3.
Abstract The family Lauraceae is a major component of tropical and subtropical forests worldwide, and includes some commercially important timber trees and medicinal plants. However, phylogenetic relationships within Lauraceae have long been problematic due to low sequence divergence in commonly used markers, even between morphologically distinct taxa within the family. Here we present phylogenetic analyses of 43 newly generated Lauraceae plastomes together with 77 plastomes obtained from GenBank, representing 24 genera of Lauraceae and 17 related families of angiosperms, plus nine barcodes from 19 additional species in 18 genera of Lauraceae, in order to reconstruct highly supported relationships for the Lauraceae. Our phylogeny supports the relationships: sisterhood of the Lauraceae and a clade containing Hernandiaceae and Monimiaceae, with Atherospermataceae and Gomortegaceae being the next sister groups, followed by Calycanthaceae. Our results highlight a monophyletic Lauraceae, with nine well‐supported clades as follows: Hypodaphnis clade, BeilschmiediaCryptocarya clade, Cassytha clade, Neocinnamomum clade, Caryodaphnopsis clade, ChlorocardiumMezilaurus clade, MachilusPersea clade, CinnamomumOcotea clade, and LaurusNeolitsea clade. The topology recovered here is consistent with the patterns of plastome structural evolution and morphological synapomorphies reported previously. More specifically, flower sex, living type, inflorescence type, ovary position, anther locus number, leaf arrangement, leaf venation, lateral vein number, tree height, and inflorescence location all represent morphological synapomorphies of different lineages. Our findings have taxonomic implications and two new tribes, Caryodaphnopsideae and Neocinnamomeae, are described, and the composition of four other tribes is updated. The phylogeny recovered here provides a robust phylogenetic framework through which to address the evolutionary history of the Magnoliids, the third‐largest group of Mesangiospermae.  相似文献   
4.
5.
A literature review of 34 families of flowering plants containing at least one species pollinated primarily by beetles is presented. While the majority of species are represented by magnoliids and basal monocotyledons specialized, beetle-pollinated systems have evolved independently in 14 families of eudicotyldons and six families of petaloid monocots. Four, overlapping modes of floral presentation in plants pollinated exclusively by beetles (Bilabiate, Brush, Chamber Blossom and Painted Bowl) are described. Chamber Blossoms and Painted Bowls are the two most common modes. Chamber Blossoms, found in magnoliids, primitive monocotyledons and in some families of woody eudicots, exploit the greatest diversity of beetle pollinators. Painted Bowls are restricted to petaloid monocots and a few families of eudicots dependent primarily on hairy species of Scarabaeidae as pollen vectors. In contrast, generalist flowers pollinated by a combination of beetles and other animals are recorded in 22 families. Generalist systems are more likely to secrete nectar and exploit four beetle families absent in specialist flowers. Centers of diversity for species with specialized, beetle-pollinated systems are distributed through the wet tropics (centers for Brush and Chamber Blossoms) to warm temperate-Mediterranean zones (centers for Painted Bowls and a few Bilabiate flowers). It is unlikely that beetles were the first pollinators of angiosperms but specialized, beetlepollinated flowers must have evolved by the midlate Cretaceous to join pre-existing guilds of beetlepollinated gymnosperms. The floras of Australia and western North America suggest that mutualistic interactions between beetles and flowers has been a continuous and labile trend in angiosperms with novel interactions evolving through the Tertiary.  相似文献   
6.
Phylogenetic relationships among the five key angiosperm lineages,Ceratophyllum,Chloranthaceae,eudicots,magnoliids,and monocots,have resisted resolution despite several large-scale analyses sampling taxa and characters extensively and using various analytical methods.Meanwhile,compatibility methods,which were explored together with parsimony and likelihood methods during the early development stage of phylogenetics.have been greatly under-appreciated and not been used to analyze the massive amount of sequence data to reconstruct thye basal angiosperm phylogeny.In this study,we used a compatibility method on a data set of eight genes (mitochondrial atp1,matR,and nad5,plastid atpB,marK,rbcL,and rpoC2,and nuclear 18S rDNA)gathered in an earlier study.We selected two sets of characters that are compatible with more of the other characters than a random character would be with at probabilities of pM<0.1 and p<0.5 respectively.The resulting data matrices were subjected to parsimony and likelihood bootstrap analyses.Our unrooted parsimony analyses showed that Ceratophyllum was immediately related to eudicots,this larger lineage was immediately related to magnoliids,and monocots were closely related to Chloranthaceae.All these relationships received 76%-96% bootstrap support.A likelihood analysis of the 8 gene pM<0.5 compatible site matrix recovered the same topology but with low support.Likelihood analyses of other compatible site matrices produced different topologies that were all weakly supported.The topology reconstructed in the parsimony analyses agrees with the one recovered in the previous study using both parsimony and likelihood methods when no character was eliminated.Parts of this topology have also been recovered in several earlier studies.Hence,this topology plausibly reflects the true relationships among the five key angiosperm lineages.  相似文献   
7.
The evolutionary significance of the c . 1000-fold range of DNA C-values in angiosperms (1C =  c . 0.1–127.4 pg) has often attracted interest. A recent analysis, which superimposed available C-value data onto the angiosperm phylogeny, that placed Ceratophyllaceae as the most basal angiosperm family led to the conclusion that ancestral angiosperms were characterized by small genomes (defined as 1C £ 3.5 pg). However, with the recent increase in DNA sequence data and large-scale phylogenetic analyses, strong support is now provided for Amborellaceae and/or Nymphaeaceae as the most basal angiosperm families, followed by Austrobaileyales (comprising Schisandraceae, Trimeniaceae and Austrobaileyaceae). Together these five families comprise the ANITA grade. The remaining basal angiosperm families (Ceratophyllaceae, Chloranthaceae and magnoliids), together with monocotyledons and eudicotyledons, form a strongly supported clade. A survey showed that C-value data were scarce in the basal angiosperm families, especially the ANITA grade. The present paper addresses these phylogenetic gaps by providing C-value estimates for each family in ANITA, together with C-values for species in Chloranthaceae, Ceratophyllaceae and a previously unrepresented family in the magnoliids, the Winteraceae.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 175–179.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号