首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3034篇
  免费   154篇
  国内免费   99篇
  2023年   66篇
  2022年   108篇
  2021年   93篇
  2020年   111篇
  2019年   115篇
  2018年   100篇
  2017年   63篇
  2016年   56篇
  2015年   82篇
  2014年   147篇
  2013年   188篇
  2012年   125篇
  2011年   132篇
  2010年   96篇
  2009年   117篇
  2008年   102篇
  2007年   117篇
  2006年   101篇
  2005年   95篇
  2004年   68篇
  2003年   69篇
  2002年   57篇
  2001年   48篇
  2000年   43篇
  1999年   45篇
  1998年   46篇
  1997年   35篇
  1996年   34篇
  1995年   23篇
  1994年   34篇
  1993年   26篇
  1992年   30篇
  1991年   27篇
  1990年   25篇
  1989年   14篇
  1988年   13篇
  1987年   13篇
  1985年   56篇
  1984年   76篇
  1983年   58篇
  1982年   56篇
  1981年   55篇
  1980年   56篇
  1979年   43篇
  1978年   43篇
  1977年   37篇
  1976年   35篇
  1975年   30篇
  1974年   33篇
  1973年   22篇
排序方式: 共有3287条查询结果,搜索用时 15 毫秒
1.
2.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   
3.
It is now possible to examine in detail exchanges between sister chromatids (SCEs) and to attempt to investigate the relationships of such exchanges to aberration formation and DNA-repair mechanisms. The frequency of SCEs is dramatically increased by chemical mutagens and may reflect the level of DNA damage. Lymphocytes from patients with ataxia telangiectasis (AT) show high levels of spontaneous chromosome damage and are hypersentive to ionising radiations and it was of interest to examine the levels of SCE induced in these cells by various mutagens. The frequencies of SCE after treatment with X=rays or three chemical mutagens were equivalent to those in normal cells. The effects of fluorodeoxyuridine and deoxycytidine on SCE frequencies were also tested.  相似文献   
4.
Transecting the axons of neurons in the adult superior cervical ganglion (SCG; axotomy) results in the survival of most postganglionic neurons, the influx of circulating monocytes, proliferation of satellite cells, and changes in neuronal gene expression. In contrast, transecting the afferent input to the SCG (decentralization) results in nerve terminal degeneration and elicits a different pattern of gene expression. We examined the effects of decentralization on macrophages in the SCG and compared the results to those previously obtained after axotomy. Monoclonal antibodies were used to identify infiltrating (ED1+) and resident (ED2+) macrophages, as well as macrophages expressing MHC class II molecules (OX6+). Normal ganglia contained ED2+ cells and OX6+ cells, but few infiltrating macrophages. After decentralization, the number of infiltrating ED1+ cells increased in the SCG to a density about twofold greater than that previously seen after axotomy. Both the densities of ED2+ and OX6+ cells were essentially unchanged after decentralization, though a large increase in OX6+ cells occurred after axotomy. Proliferation among the ganglion's total non‐neuronal cell population was examined and found to increase about twofold after decentralization and about fourfold after axotomy. Double‐labeling experiments indicated that some of these proliferating cells were macrophages. After both surgical procedures, the percentage of proliferating ED2+ macrophages increased, while neither procedure altered the proliferation of ED1+ macrophages. Axotomy, though not decentralization, increased the proliferation of OX6+ cells. Future studies must address what role(s) infiltrating and/or resident macrophages play in regions of decentralized and axotomized neurons and, if both are involved, whether they play distinct roles. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 68–79, 2002  相似文献   
5.
6.
Electrophysiological studies of cultured rat pancreatic β-cells using intracellular microelectrodes show that exogenous insulin over the range of 0.1–10.0 μg/ml inhibits the electrical activity due to 27.8 mM glucose in a dose-related manner. This inhibitory effect is manifested by a mean increase of the membrane potential from about ?20 to ?30 mV and inhibition of the manner of cells impaled showing spike activity from 60 to less than 10%. The inhibitory influence of insulin is rapid occuring within 5 min for the highest level used. The results provide evidence for a negative feedback role of insulin in regulating its own release.  相似文献   
7.
The phospholipids of intact microsomal membranes were hydrolysed 50% by phospholipase C of Clostridium welchii, without loss of the secretory protein contents of the vesicle, which are therefore not permeable to the phospholipase. Phospholipids extracted from microsomes and dispersed by sonication were hydrolysed rapidly by phospholipase C-Cl. welchii with the exception of phosphatidylinositol. Assuming that only the phospholipids of the outside of the bilayer of the microsomal membrane are hydrolysed in intact vesicles, the composition of this leaflet was calculated as 84% phosphatidylcholine, 8% phosphatidylethanolamine, 9% sphingomyelin and 4% phosphatidylserine, and that of the inner leaflet 28% phosphatidylcholine, 37% phosphatidylethanolamine, 6% phosphatidylserine and 5% sphingomyelin. Microsomal vesicles were opened and their contents released in part by incubation with deoxycholate (0.098%) lysophosphatidylcholine (0.005%) or treatment with the French pressure cell. Under these conditions, hydrolysis of the phospholipids by phospholipase C-Cl. welchii was increased and this was mainly due to increased hydrolysis of those phospholipids assigned to the inner leaflet of the bilayer, phosphatidylethanolamine and phosphatidylserine. Phospholipase A2 of bee venom and phospholipase C of Bacillus cereus caused rapid loss of vesicle contents and complete hydrolysis of the membrane phospholipids, with the exception of sphingomyelin which is not hydrolysed by the former enzyme.  相似文献   
8.
Cesium ions block potassium channels in biological membranes in a voltage dependent manner. For example, external cesium blocks inward current with little or no effect on outward current. Consequently, it produces a characteristic N-shaped current-voltage relationship. We have modeled this result by single file diffusion of ions in a narrow channel spanning the membrane with a special blocking site in the channel for cesium ions. The model enables us to make detailed comparisons of the effects of cesium on potassium channels in different types of biological membranes.  相似文献   
9.
Results from this laboratory have demonstrated that14C-labeled myelin opsonized with antibodies raised to purified CNS myelin in rabbit is phagocytized by cultured macrophages in larger amounts than untreated myelin or myelin opsonized with preimmune serum. The cultured macrophages produced high amounts of radioactive cholesterol ester and triglyceride from the antibody-treated myelin while much less was formed from preimmune serum-treated or untreated myelin. Antiserum to galactocerebroside also greatly enhanced the formation of radioactive cholesterol ester, while that to myelin basic protein as well as to other myelin constituents had little or no effect. Serum from Lewis rats with acute EAE 13–14 days after immunization with whole CNS myelin also stimulated radioactive cholesterol ester formation compared to serum from Freund's adjuvant-injected controls (FAC). Serum from EAE rats as a result of myelin basic protein injection was as active as that from rats with whole myelin injection. No galactocerebroside antibody could be demonstrated in the EAE sera, although a strong immunostaining to myelin basic protein and proteolipid protein was demonstrated. IgG prepared from EAE serum also showed stimulatory effects compared to IgG from FAC serum, but much of the activity was lost, and the possibility that other factors may be involved is discussed. These experiments provide evidence that myelin phagocytosis and digestion by macrophages is enhanced by the presence of antibody to myelin. In EAE this antibody may leak into CNS with the breakdown of the blood-brain barrier. A humoral involvement in demyelination in EAE is implicated, and these findings may be extended eventually to the demyelinative mechanism in multiple sclerosis where IgG is found in large amounts in the CNS.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号