首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   27篇
  国内免费   22篇
  2024年   1篇
  2023年   8篇
  2022年   18篇
  2021年   14篇
  2020年   20篇
  2019年   21篇
  2018年   22篇
  2017年   19篇
  2016年   11篇
  2015年   18篇
  2014年   31篇
  2013年   48篇
  2012年   14篇
  2011年   15篇
  2010年   24篇
  2009年   11篇
  2008年   24篇
  2007年   18篇
  2006年   12篇
  2005年   16篇
  2004年   8篇
  2003年   11篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   4篇
  1986年   5篇
  1985年   7篇
  1984年   1篇
  1983年   6篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
排序方式: 共有473条查询结果,搜索用时 64 毫秒
1.
2.
Liver -glucuronidase is structurally altered in inbred strain PAC so that a peptide subunit with a more basic isoelectric point, GUS-SN, is produced. This allele of -glucuronidase was transferred to strain C57BL/6J by 12 backcross matings to form the congenic line B6 · PAC-Gus n. Liver -glucuronidase activity was halved in males of the congenic strain compared to normal males. The lowered activity was specifically accounted for by a decrease in the lysosomal component. There was no alteration in the concentration of microsomal activity. This alteration in the subcellular distribution of -glucuronidase in Gus n/Gus n mice was confirmed by two independent gel electrophoretic systems which separate microsomal and lysosomal components. -Glucuronidase activity was likewise approximately halved in mutant spleen, lung, and brain, organs which contain exclusively or predominantly lysosomal -glucuronidase. The loss of liver lysosomal -glucuronidase activity was shown by immunotitration to be due to a decrease in the number of -glucuronidase molecules in lysosomes of the congenic strain. The Gus n structural alteration likely causes the lowered lysosomal -glucuronidase activity since the two traits remain in congenic animals. Heterozygous Gus n/Gus b animals had intermediate levels of liver -glucuronidase. Also, the effect was specific, in that three other lysosomal enzymes were not reproducibly lower in Gus n/Gus n mice. Gus n is, therefore, an unusual example of a mutation which causes a change in the subcellular distribution of a two-site enzyme.This work was supported by National Institutes of Health Grants GM-33559 and GM-33160 and National Science Foundation Grant PCM-8215808.  相似文献   
3.
Summary Deficient arylsulfatase-A activity is diagnostic of a neurodegenerative human lysosomal storage disease, metachromatic leukodystrophy. Paradoxically, similar enzyme deficiency also occurs in normal individuals, who are known as being pseudo arylsulfatase-A deficient. We showed previously that this phenotype is associated with a structural gene mutation that produces an exceptionally labile enzyme. We now report on the nature and consequence of this mutation. When the mutant arylsulfatase-A is deglycosylated by endoglycosidase H, only one smaller molecular species was generated, instead of the two from the normal enzyme. This is consistent with the loss of one of the two N-linked oligosaccharide side chains known to be present on the wild-type enzyme. Quantitative analysis of mannose and leucine incorporation showed that the mutant enzyme incorporated two- to tenfold less mannose than the normal enzyme on a molar basis. This deficient glycosylation was specific to arylsulfatase-A. Another lysosomal enzyme not affected in this mutation, beta-hexosaminidase, was glycosylated normally in the mutant cells. The remaining single oligosaccharide side chain released from the mutant arylsulfatase-A by pronase digestion was normally processed to complex and high-mannose forms. However, the high-mannose side chains contained 30% fewer phosphorylated residues than those of the normal enzyme. Nevertheless, this reduced level of phosphorylation did not prevent targeting of the mutant enzyme to the lysosomes, a process normally mediated through phosphorylated mannose residues. In conclusion, pseudo arylsulfatase-A deficiency is a unique human mutation associated with reduced glycosylation and phosphorylation of a lysosomal enzyme with the loss of one of the two carbohydrate side chains. The mutation results in greatly reduced enzyme stability, thus indicating a role for oligosaccharides in maintaining enzyme stability within the degradative environment of the lysosomes. However, the residual catalytic activity or subcellular targeting of the mutant enzyme was not affected. These properties probably account for the benign clinical presentation of pseudo arylsulfatase-A deficiency.Abbreviations PD Pseudo arylsulfatase-A Deficiency - ARA Arylsulfatase-A  相似文献   
4.
The cation-independent mannose 6-phosphate receptor (215,000 daltons) was isolated from embryonic bovine tracheal cells and embryonic human skin fibroblasts labelled with [3H]palmitic acid. The tritium label was detected in the protein upon fluorographic analysis of SDS-polyacrylamide gels of the purified receptor. The label was not sensitive to hydroxylamine, methanolic KOH, or beta-mercaptoethanol, but labelled fatty acid was recovered from the protein by acidic methanolysis. Labelled receptor protein could not be isolated from cells grown in the presence of [3H]myristic acid. The results suggest the presence of amide-linked palmitic acid in the structure of the cation-independent mannose 6-phosphate receptor.  相似文献   
5.
A novel screening procedure was developed for isolating Chinese hamster ovary cell mutants altered in the early steps of the biosynthesis of asparagine-linked glycoproteins. This procedure identifies cells with low intracellular levels of two lysosomal hydrolases, beta-glucuronidase and alpha-iduronidase. One mutant cell line isolated in this way, CHB 11-1-3, has low intracellular levels of seven lysosomal enzymes as compared to wild-type cells. Although CHB 11-1-3 synthesizes mannosylphosphoryldolichol and [Man]5[NAcG1cNH2]2-P-P-lipid, it fails to utilize these lipid intermediates to make normal amounts of [Glc]3[Man]9[NAcG1cNH2]2P-P-lipid. As a consequence of this glycosylation defect, this mutant transfers oligosaccharides of a different structure than wild type to the lysosomal enzyme beta-hexosaminidase. In addition, it underglycosylates its proteins.  相似文献   
6.
不同发育年龄大鼠肝细胞及其溶酶体对急性低氧的应答   总被引:5,自引:1,他引:4  
人工低压舱内模拟高原低氧24h,并与2300m对照组比较,观察不同发育年龄大鼠SGOT活力,肝溶酶体总酸性磷酸酶、非沉淀酸性磷酸酶和芳基硫酸酯酶活力及肝重、肝细胞糖原、蛋白和总脂含量的变化。在海拔5000m高度,10天鼠各酶活力、570天鼠总酸性磷酸酶和芳基硫酸酯酶活力明显升高;35和75天鼠各酶活力未见显著变化;在海拔8000m高度,各年龄组鼠上述各酶活力均显著升高。随着海拔高度的升高,各组大鼠肝重呈不同程度的下降,肝细胞糖原含量非常明显地减少,35和75天鼠8000m组全肝蛋白含量下降明显,10、35、75天鼠肝细胞总脂累积。上述结果综合分析表明:低氧致使大鼠肝细胞损伤属一普遍性效应,新生期和老年期大鼠肝细胞耐低氧能力不及幼年期和成年期大鼠。  相似文献   
7.
Biosynthesis of lysosomal endopeptidases   总被引:6,自引:0,他引:6  
Despite the clear differences between the amino acid sequence and enzymatic specificity of aspartic and cysteine endopeptidases, the biosynthetic processing of lysosomal members of these two families is very similar. With in vitro translation and pulse-chase analysis in tissue culture cells, the biosynthesis of cathepsin D, a aspartic protease, and cathepsins B, H and L, cysteine proteases, are compared. Both aspartic and cysteine endopeptidases undergo cotranslational cleavage of an amino-terminal signal peptide that mediates transport across the endoplasmic reticulum (ER) membrane. Addition of high-mannose carbohydrate also occurs cotranslationally in the lumen of the ER. Proteases of both enzyme classes are initially synthesized as inactive proenzymes possessing amino-terminal activation peptides. Removal of the propeptide generates an active single-chain enzyme. Whether the single-chain enzyme undergoes asymmetric cleavage into a light and a heavy chain appears to be cell type specific. Finally, late during their biosynthesis both classes of enzymes undergo amino acid trimming, losing a few amino acid residues at the cleavage site between the light and heavy chains and/or at their carboxyltermini. During biosynthesis these enzymes are also secreted to some extent. In most cells the secreted enzyme is the proenzyme bearing some complex carbohydrate. Under certain physiological conditions the inactive secreted enzymes may become activated as a result of a conformational change that may or may not result in autolysis. Analysis of the biochemical nature of the various processing steps helps define the cellular pathway followed by newly synthesized proteases targeted to the lysosome.  相似文献   
8.
9.
Crude chromaffin secretory vesicles, obtained by differential centrifugation, were further purified on isotonic (Percoll) gradients. The chromaffin vesicle fractions recovered from the gradients contain acetylcholinesterase as well as lysosomal enzymes. With the aid of a subsequent sucrose gradient lysosomal enzymes could be removed from chromaffin vesicle fractions, but not acetylcholinesterase. This suggests that lysosomal enzymes do not pass through the chromaffin vesicles during the biogenesis of lysosomes but acetylcholinesterase does.  相似文献   
10.
-Glucuronidase (GUS) has become an important enzyme model for the genetic study of molecular disease, enzyme realization, and therapy, and for the biogenesis and function of the lysosome and lysosomal enzymes. The genetics of human -glucuronidase was investigated utilizing 188 primary man-mouse and man-Chinese hamster somatic cell hybrids segregating human chromosomes. Cell hybrids were derived from 16 different fusion experiments involving cells from ten different and unrelated individuals and six different rodent cell lines. The genetic relationship of GUS to 28 enzyme markers representing 19 linkage groups was determined, and chromosome studies on selected cell hybrids were performed. The evidence indicates that the -glucuronidase gene is assigned to chromosome 7 in man. Comparative linkage data in man and mouse indicate that the structural gene GUS is located in a region on chromosome 7 that has remained conserved during evolution. Involvement of other chromosomes whose genes may be important in the final expression of GUS was not observed. A tetrameric structure of human -glucuronidase was demonstrated by the formation of three heteropolymers migrating between the human and mouse molecular forms in chromosome 7 positive cell hybrids. Linkage of GUS to other lysosomal enzyme genes was investigated. -Hexosaminidase HEX B) was assigned to chromosome 5; acid phosphatase2 (ACP 2) and esterase A4 (ES-A 4) were assigned to chromosome 11; HEX A was not linked to GUS; and -galactosidase (-GAL) was localized on the X chromosome. These assignments are consistent with previous reports. Evidence was not obtained for a cluster of lysosomal enzyme structural genes. In demonstrating that GUS was not assigned to chromosome 9 utilizing an X/9 translocation segregating in cell hybrids, the gene coding for human adenylate kinase1 was confirmed to be located on chromosome 9.Supported by NIH Grants HD 05196, GM 20454, and GM 06321, by NSF Grant BMS 73-07072, and by HEW Maternal and Child Health Service, Project 417.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号